A Novel Gonadotropin-Releasing Hormone 1 (Gnrh1) Enhancer-Derived Noncoding RNA Regulates Gnrh1 Gene Expression in GnRH Neuronal Cell Models.
Ontology highlight
ABSTRACT: Gonadotropin-releasing hormone (GnRH), a neuropeptide released from a small population of neurons in the hypothalamus, is the central mediator of the hypothalamic-pituitary-gonadal axis, and is required for normal reproductive development and function. Evolutionarily conserved regulatory elements in the mouse, rat, and human Gnrh1 gene include three enhancers and the proximal promoter, which confer Gnrh1 gene expression specifically in GnRH neurons. In immortalized mouse hypothalamic GnRH (GT1-7) neurons, which show pulsatile GnRH release in culture, RNA sequencing and RT-qPCR revealed that expression of a novel long noncoding RNA at Gnrh1 enhancer 1 correlates with high levels of GnRH mRNA expression. In GT1-7 neurons, which contain a transgene carrying 3 kb of the rat Gnrh1 regulatory region, both the mouse and rat Gnrh1 enhancer-derived noncoding RNAs (GnRH-E1 RNAs) are expressed. We investigated the characteristics and function of the endogenous mouse GnRH-E1 RNA. Strand-specific RT-PCR analysis of GnRH-E1 RNA in GT1-7 cells revealed GnRH-E1 RNAs that are transcribed in the sense and antisense directions from distinct 5' start sites, are 3' polyadenylated, and are over 2 kb in length. These RNAs are localized in the nucleus and have a half-life of over 8 hours. In GT1-7 neurons, siRNA knockdown of mouse GnRH-E1 RNA resulted in a significant decrease in the expression of the Gnrh1 primary transcript and Gnrh1 mRNA. Over-expression of either the sense or antisense mouse GnRH-E1 RNA in immature, migratory GnRH (GN11) neurons, which do not express either GnRH-E1 RNA or GnRH mRNA, induced the transcriptional activity of co-transfected rat Gnrh1 gene regulatory elements, where the induction requires the presence of the rat Gnrh1 promoter. Together, these data indicate that GnRH-E1 RNA is an inducer of Gnrh1 gene expression. GnRH-E1 RNA may play an important role in the development and maturation of GnRH neurons.
SUBMITTER: Huang PP
PROVIDER: S-EPMC4936741 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
ACCESS DATA