Ontology highlight
ABSTRACT: Background
Stationary hemodialysis machines hinder mobility and limit activities of daily life during dialysis treatments. New hemodialysis technologies are needed to improve patient autonomy and enhance quality of life.Methods
We conducted a FDA-approved human trial of a wearable artificial kidney, a miniaturized, wearable hemodialysis machine, based on dialysate-regenerating sorbent technology. We aimed to determine the efficacy of the wearable artificial kidney in achieving solute, electrolyte, and volume homeostasis in up to 10 subjects over 24 hours.Results
During the study, all subjects remained hemodynamically stable, and there were no serious adverse events. Serum electrolytes and hemoglobin remained stable over the treatment period for all subjects. Fluid removal was consistent with prescribed ultrafiltration rates. Mean blood flow was 42 ± 24 ml/min, and mean dialysate flow was 43 ± 20 ml/min. Mean urea, creatinine, and phosphorus clearances over 24 hours were 17 ± 10, 16 ± 8, and 15 ± 9 ml/min, respectively. Mean β2-microglobulin clearance was 5 ± 4 ml/min. Of 7 enrolled subjects, 5 completed the planned 24 hours of study treatment. The trial was stopped after the seventh subject due to device-related technical problems, including excessive carbon dioxide bubbles in the dialysate circuit and variable blood and dialysate flows.Conclusion
Treatment with the wearable artificial kidney was well tolerated and resulted in effective uremic solute clearance and maintenance of electrolyte and fluid homeostasis. These results serve as proof of concept that, after redesign to overcome observed technical problems, a wearable artificial kidney can be developed as a viable novel alternative dialysis technology.Trial registration
ClinicalTrials.gov NCT02280005.Funding
The Wearable Artificial Kidney Foundation and Blood Purification Technologies Inc.
SUBMITTER: Gura V
PROVIDER: S-EPMC4936831 | biostudies-literature |
REPOSITORIES: biostudies-literature