A nanometric Rh overlayer on a metal foil surface as a highly efficient three-way catalyst.
Ontology highlight
ABSTRACT: Pulsed arc-plasma (AP) deposition of an Rh overlayer on an Fe-Cr-Al stainless steel foil produced a composite material that exhibited high activity for automotive three-way catalysis (TWC). The AP pulses deposited metallic Rh nanoparticles 1-3?nm in size, whose density on the surface increased with the number of pulses. This led to coalescence and grain growth on the foil surface and the eventual formation of a uniform two-dimensional Rh overlayer. Full coverage of the 51??m-thick flat foil by a 3.2?nm-thick Rh overlayer was achieved after 1,000 pulses. A simulated TWC reaction using a miniature honeycomb fabricated using flat and corrugated foils with the Rh overlayers exhibited successful light-off at a practical gaseous hourly space velocity of 1.2?×?10(5)?h(-1). The turnover frequency for the NO-CO reaction over the metallic honeycomb catalyst was ca. 80-fold greater than that achieved with a reference Rh/ZrO2-coated cordierite honeycomb prepared using a conventional wet impregnation and slurry coating procedure. Despite the nonporosity and low surface area of the foil-supported Rh overlayer compared with conventional powder catalysts (Rh/ZrO2), it is a promising alternative design for more efficient automotive catalysts that use less Rh loading.
SUBMITTER: Misumi S
PROVIDER: S-EPMC4937386 | biostudies-literature | 2016 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA