Project description:BackgroundLeishmania Homologue of receptors for Activated C Kinase (LACK) antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica.MethodsThe present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR) technique.ResultsThe typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed.ConclusionOverall, the data set the stage for future studies of the properties and immune role of LACK gene products.
Project description:The aim of this project is to use transcriptome sequencing of parents and offspring of Leishmania tropica genetic crosses to establish the basic parameters of recombination in this species and to understand the extent and importance of gene conversion. This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:Leishmania (L.) killicki (syn. L. tropica), which causes cutaneous leishmaniasis in Maghreb, was recently described in this region and identified as a subpopulation of L. tropica. The present genetic analysis was conducted to explore the spatio-temporal distribution of L. killicki (syn. L. tropica) and its transmission dynamics. To better understand the evolution of this parasite, its population structure was then compared with that of L. tropica populations from Morocco. In total 198 samples including 85 L. killicki (syn. L. tropica) (from Tunisia, Algeria and Libya) and 113 L. tropica specimens (all from Morocco) were tested. Theses samples were composed of 168 Leishmania strains isolated from human skin lesions, 27 DNA samples from human skin lesion biopsies, two DNA samples from Ctenodactylus gundi bone marrow and one DNA sample from a Phlebotomus sergenti female. The sample was analyzed by using MultiLocus Enzyme Electrophoresis (MLEE) and MultiLocus Microsatellite Typing (MLMT) approaches. Analysis of the MLMT data support the hypothesis that L. killicki (syn. L. tropica) belongs to the L. tropica complex, despite its strong genetic differentiation, and that it emerged from this taxon by a founder effect. Moreover, it revealed a strong structuring in L. killicki (syn. L. tropica) between Tunisia and Algeria and within the different Tunisian regions, suggesting low dispersion of L. killicki (syn. L. tropica) in space and time. Comparison of the L. tropica (exclusively from Morocco) and L. killicki (syn. L. tropica) population structures revealed distinct genetic organizations, reflecting different epidemiological cycles.
Project description:PurposeThe interaction between the Leishmania parasite and the host cell involves complex, multifaceted processes. The disease severity in cutaneous leishmaniasis (CL) is largely dependent on the causative species. Most of the information on immune responses in human CL is available with respect to L. major infection and is lacking for L. tropica species. In this study, we employed cytokine/chemokine/receptor membrane cDNA array to capture comprehensive picture of immuno-determinants in localized human tissue during L. tropica infection. Expression of selected molecules was evaluated by real time PCR in dermal lesion tissues at pre- and post treatment stages. Plasma IL-17 level was estimated by sandwich ELISA.ResultsThe cDNA array analysis identified several immuno-determinants in tissue lesions of Indian CL including cytokines (IFN-γ, TNF-α, IL-1β, IL-10, IL-13), chemokines (IL-8, CCL2, CCL3, CCL4) and apoptotic molecules (Fas, TRAIL, IRF-1). Elevated mRNA levels of Th17 (IL-17, IL-23 and RORγt) and Treg (CD25, CTLA-4 and Foxp3) markers were observed in lesion tissues of CL patients compared to the control group, which subsided post treatment. Plasma IL-17 levels were found to be significantly higher in CL samples compared to controls.ConclusionsIn addition to defining comprehensive immunological responses inside lesion tissues of CL patients, our study demonstrated the presence of Th17 and Treg cells in CL caused by L. tropica.
Project description:Photodynamic inactivation ofLeishmaniaspp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency againstLeishmania tropicapromastigotes and axenic amastigotesin vitro The uptake of these PCs by bothLeishmaniastages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation ofLeishmaniaspp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitizedLeishmania tropicastrains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ?650 nm) at a fluence of 1 to 2 J cm(-2) Quantitative fluorescence assays based on the loss of GFP/CFSE from liveLeishmania tropicashowed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay.Leishmania tropicastrains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation ofLeishmaniaspp. for use as vaccines or vaccine carriers.
Project description:BackgroundThe taxonomic status of Leishmania (L.) killicki, a parasite that causes chronic cutaneous leishmaniasis, is not well defined yet. Indeed, some researchers suggested that this taxon could be included in the L. tropica complex, whereas others considered it as a distinct phylogenetic complex. To try to solve this taxonomic issue we carried out a detailed study on the evolutionary history of L. killicki relative to L. tropica.MethodsThirty-five L. killicki and 25 L. tropica strains isolated from humans and originating from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches.ResultsThe results of the genetic and phylogenetic analyses strongly support the hypothesis that L. killicki belongs to the L. tropica complex. Our data suggest that L. killicki emerged from a single founder event and that it evolved independently from L. tropica. However, they do not validate the hypothesis that L. killicki is a distinct complex. Therefore, we suggest naming this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination.ConclusionsThis study provides taxonomic and phylogenetic information on L. killicki and improves our knowledge on the evolutionary history of this taxon.
Project description:BackgroundLeishmania (L) major and L. tropica are the etiological agents of cutaneous leishmaniosis. Leishmania species cause a board spectrum of phenotypes. A small number of genes are differentially expressed between them that have likely an important role in the disease phenotype. Procyclic and metacyclic are two morphological promastigote forms of Leishmania that express different genes. The glutathione peroxidase is an important antioxidant enzyme that essential in parasite protection against oxidative stress and parasite survival. This study aimed to compare glutathione peroxidase (TDPX) gene expression in procyclic and metacyclic and also interspecies in Iranian isolates of L. major and L. tropica.MethodsThe samples were cultured in Novy-Nicolle-Mc Neal medium to obtain the promastigotes and identified using PCR-RFLP technique. They were then grown in RPMI1640 media for mass cultivation. The expression level of TDPX gene was compared by Real-time PCR.ResultsBy comparison of expression level, up-regulation of TDPX gene was observed (5.37 and 2.29 folds) in L. major and L. tropica metacyclic compared to their procyclic, respectively. Moreover, there was no significant difference between procyclic forms of isolates, while 3.05 folds up-regulation in metacyclic was detected in L. major compared L. tropica.ConclusionOur data provide a foundation for identifying infectivity and high survival related factors in the Leishmania spp. In addition, the results improve our understanding of the molecular basis of metacyclogenesis and development of new potential targets to control or treatment and also, to the identification of species-specific factors contributing to virulence and pathogenicity in the host cells.
Project description:BackgroundCutaneous leishmaniasis (CL) caused by Leishmania tropica is endemic in Kerman, southeastern Iran. While dogs have long been implicated as the main domestic reservoirs of L. infantum, etiological agent of zoonotic visceral leishmaniasis (ZVL), they can also carry L. tropica infection. The objective of the present study was to determine molecular identity and to evaluate histopathological changes due to CL in dogs in a well-known focus of anthroponotic CL (ACL) in Kerman, southeastern Iran.MethodsThis study was carried out in three prospective series from 1994 to 2013 on dogs. Tissue samples were taken from 471 stray dogs. Pathological specimens including skin, spleen, liver and lymph nodes were prepared for paraffin blocks, sectioning and staining for further histopathological examination. PCR amplification of kDNA was performed to identify the causative agent and sequencing. Overall, two out of 471 stray dogs were infected with L. tropica. Hyperplasia of red pulp by the proliferation of histiocytes, lymphocytes, plasma cells and cytoplasm of histiocytes collection of amastigotes was noted.ResultsBased on the results of PCR products and sequencing analysis, the parasites isolated from the lesions of two dogs were characterized as L. tropica, corresponding to a band of 830 bp.ConclusionThis finding revealed infection with L. tropica in stray dogs in the city and suburbs of Kerman. This information is essential for public health concerns and planning effective future control programs. The role of dogs as potentional reservoir in the epidemiology of ACL needs further investigation.