Thickness Considerations of Two-Dimensional Layered Semiconductors for Transistor Applications.
Ontology highlight
ABSTRACT: Layered two-dimensional semiconductors have attracted tremendous attention owing to their demonstrated excellent transistor switching characteristics with a large ratio of on-state to off-state current, Ion/Ioff. However, the depletion-mode nature of the transistors sets a limit on the thickness of the layered semiconductor films primarily determined by a given Ion/Ioff as an acceptable specification. Identifying the optimum thickness range is of significance for material synthesis and device fabrication. Here, we systematically investigate the thickness-dependent switching behavior of transistors with a wide thickness range of multilayer-MoS2 films. A difference in Ion/Ioff by several orders of magnitude is observed when the film thickness, t, approaches a critical depletion width. The decrease in Ion/Ioff is exponential for t between 20?nm and 100?nm, by a factor of 10 for each additional 10?nm. For t larger than 100?nm, Ion/Ioff approaches unity. Simulation using technical computer-aided tools established for silicon technology faithfully reproduces the experimentally determined scaling behavior of Ion/Ioff with t. This excellent agreement confirms that multilayer-MoS2 films can be approximated as a homogeneous semiconductor with high surface conductivity that tends to deteriorate Ion/Ioff. Our findings are helpful in guiding material synthesis and designing advanced field-effect transistors based on the layered semiconductors.
SUBMITTER: Zhang Y
PROVIDER: S-EPMC4940740 | biostudies-literature | 2016 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA