Unknown

Dataset Information

0

The Global S[Formula: see text] Tide in Earth's Nutation.


ABSTRACT: Diurnal S[Formula: see text] tidal oscillations in the coupled atmosphere-ocean system induce small perturbations of Earth's prograde annual nutation, but matching geophysical model estimates of this Sun-synchronous rotation signal with the observed effect in geodetic Very Long Baseline Interferometry (VLBI) data has thus far been elusive. The present study assesses the problem from a geophysical model perspective, using four modern-day atmospheric assimilation systems and a consistently forced barotropic ocean model that dissipates its energy excess in the global abyssal ocean through a parameterized tidal conversion scheme. The use of contemporary meteorological data does, however, not guarantee accurate nutation estimates per se; two of the probed datasets produce atmosphere-ocean-driven S[Formula: see text] terms that deviate by more than 30 [Formula: see text]as (microarcseconds) from the VLBI-observed harmonic of [Formula: see text] [Formula: see text]as. Partial deficiencies of these models in the diurnal band are also borne out by a validation of the air pressure tide against barometric in situ estimates as well as comparisons of simulated sea surface elevations with a global network of S[Formula: see text] tide gauge determinations. Credence is lent to the global S[Formula: see text] tide derived from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and the operational model of the European Centre for Medium-Range Weather Forecasts (ECMWF). When averaged over a temporal range of 2004 to 2013, their nutation contributions are estimated to be [Formula: see text] [Formula: see text]as (MERRA) and [Formula: see text] [Formula: see text]as (ECMWF operational), thus being virtually equivalent with the VLBI estimate. This remarkably close agreement will likely aid forthcoming nutation theories in their unambiguous a priori account of Earth's prograde annual celestial motion.

SUBMITTER: Schindelegger M 

PROVIDER: S-EPMC4944670 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Global S[Formula: see text] Tide in Earth's Nutation.

Schindelegger Michael M   Einšpigel David D   Salstein David D   Böhm Johannes J  

Surveys in geophysics 20160215


Diurnal S[Formula: see text] tidal oscillations in the coupled atmosphere-ocean system induce small perturbations of Earth's prograde annual nutation, but matching geophysical model estimates of this Sun-synchronous rotation signal with the observed effect in geodetic Very Long Baseline Interferometry (VLBI) data has thus far been elusive. The present study assesses the problem from a geophysical model perspective, using four modern-day atmospheric assimilation systems and a consistently forced  ...[more]

Similar Datasets

| S-EPMC4410410 | biostudies-other
| S-EPMC8494935 | biostudies-literature
| S-EPMC8595440 | biostudies-literature
| S-EPMC8671446 | biostudies-literature
| S-EPMC7498615 | biostudies-literature
| S-EPMC4424041 | biostudies-other
| S-EPMC8184963 | biostudies-literature
| S-EPMC4410052 | biostudies-other
| S-EPMC8571276 | biostudies-literature
| S-EPMC9884272 | biostudies-literature