Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.
Ontology highlight
ABSTRACT: The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 ?m × 14 ?m and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.
SUBMITTER: Holden MT
PROVIDER: S-EPMC4945104 | biostudies-literature | 2015 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA