Dietary fat overcomes the protective activity of thrombospondin-1 signaling in the Apc(Min/+) model of colon cancer.
Ontology highlight
ABSTRACT: Thrombospondin 1 is a glycoprotein that regulates cellular phenotype through interactions with its cellular receptors and extracellular matrix-binding partners. Thrombospondin 1 locally regulates angiogenesis and inflammatory responses that contribute to colorectal carcinogenesis in Apc(Min/+) mice. The ability of thrombospondin 1 to regulate responses of cells and tissues to a variety of stresses suggested that loss of thrombospondin 1 may also have broader systemic effects on metabolism to modulate carcinogenesis. Apc(Min/+):Thbs1(-/-) mice exhibited decreased survival and higher tumor multiplicities in the small and large intestine relative to Apc(Min/+) mice when fed a low (5%) fat western diet. However, the protective effect of endogenous thrombospondin 1 was lost when the mice were fed a western diet containing 21% fat. Biochemical profiles of liver tissue identified systemic metabolic changes accompanying the effects of thrombospondin 1 and dietary lipid intake on tumorigenesis. A high-fat western diet differentially regulated elements of amino acid, energy and lipid metabolism in Apc(Min/+):Thbs1(-/-) mice relative to Apc(Min/+):Thbs1(+/+)mice. Metabolic changes in ketone body and tricarboxylic acid cycle intermediates indicate functional interactions between Apc and thrombospondin 1 signaling that control mitochondrial function. The cumulative diet-dependent differential changes observed in Apc(Min/+):Thbs1(-/-) versus Apc(Min/+) mice include altered amino acid and lipid metabolism, mitochondrial dysfunction, eicosanoids and ketone body formation. This metabolic profile suggests that the protective role of thrombospondin 1 to decrease adenoma formation in Apc(Min/+) mice results in part from improved mitochondrial function.
SUBMITTER: Soto-Pantoja DR
PROVIDER: S-EPMC4945754 | biostudies-literature | 2016 May
REPOSITORIES: biostudies-literature
ACCESS DATA