Unknown

Dataset Information

0

Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis.


ABSTRACT: Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane and photosynthesis-driven, NADPH-independent P450 catalytic activity mediated by the electron carrier protein ferredoxin. Here, we report the fusion of ferredoxin with P450 CYP79A1 from the model plant Sorghum bicolor, which catalyzes the initial step in the pathway leading to biosynthesis of the cyanogenic glucoside dhurrin. Fusion with ferredoxin allows CYP79A1 to obtain electrons for catalysis by interacting directly with photosystem I. Furthermore, electrons captured by the fused ferredoxin moiety are directed more effectively toward P450 catalytic activity, making the fusion better able to compete with endogenous electron sinks coupled to metabolic pathways. The P450-ferredoxin fusion enzyme obtains reducing power solely from its fused ferredoxin and outperforms unfused CYP79A1 in vivo. This demonstrates greatly enhanced electron transfer from photosystem I to CYP79A1 as a consequence of the fusion. The fusion strategy reported here therefore forms the basis for enhanced partitioning of photosynthetic reducing power toward P450-dependent biosynthesis of important natural products.

SUBMITTER: Mellor SB 

PROVIDER: S-EPMC4949584 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis.

Mellor Silas Busck SB   Nielsen Agnieszka Zygadlo AZ   Burow Meike M   Motawia Mohammed Saddik MS   Jakubauskas Dainius D   Møller Birger Lindberg BL   Jensen Poul Erik PE  

ACS chemical biology 20160504 7


Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane and photosynthesis-driven, NADPH-independent P450 catalyti  ...[more]

Similar Datasets

| S-EPMC4099078 | biostudies-literature
| PRJEB38781 | ENA
| S-EPMC4546517 | biostudies-literature
| S-EPMC6989309 | biostudies-literature
| S-EPMC2901147 | biostudies-literature
| S-EPMC6208970 | biostudies-literature
2023-06-07 | GSE224014 | GEO
| S-EPMC3416377 | biostudies-literature
| S-EPMC5820651 | biostudies-literature
| S-EPMC3248948 | biostudies-literature