Unknown

Dataset Information

0

Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells.


ABSTRACT: This study presents human placenta-derived multipotent cells (PDMCs) as a source from which functional glutamatergic neurons can be derived. We found that the small heat-shock protein 27 (HSP27) was downregulated during the neuronal differentiation process. The in vivo temporal and spatial profiles of HSP27 expression were determined and showed inverted distributions with neuronal proteins during mouse embryonic development. Overexpression of HSP27 in stem cells led to the arrest of neuronal differentiation; however, the knockdown of HSP27 yielded a substantially enhanced ability of PDMCs to differentiate into neurons. These neurons formed synaptic networks and showed positive staining for multiple neuronal markers. Additionally, cellular phenomena including the absence of apoptosis and rare proliferation in HSP27-silenced PDMCs, combined with molecular events such as cleaved caspase-3 and the loss of stemness with cleaved Nanog, indicated that HSP27 is located upstream of neuronal differentiation and constrains that process. Furthermore, the induced neurons showed increasing intracellular calcium concentrations upon glutamate treatment. These differentiated cells co-expressed the N-methyl-D-aspartate receptor, vesicular glutamate transporter, and synaptosomal-associated protein 25 but did not show expression of tyrosine hydroxylase, choline acetyltransferase or glutamate decarboxylase 67. Therefore, we concluded that HSP27-silenced PDMCs differentiated into neurons possessing the characteristics of functional glutamatergic neurons.

SUBMITTER: Cheng YC 

PROVIDER: S-EPMC4957209 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells.

Cheng Yu-Che YC   Huang Chi-Jung CJ   Lee Yih-Jing YJ   Tien Lu-Tai LT   Ku Wei-Chi WC   Chien Raymond R   Lee Fa-Kung FK   Chien Chih-Cheng CC  

Scientific reports 20160722


This study presents human placenta-derived multipotent cells (PDMCs) as a source from which functional glutamatergic neurons can be derived. We found that the small heat-shock protein 27 (HSP27) was downregulated during the neuronal differentiation process. The in vivo temporal and spatial profiles of HSP27 expression were determined and showed inverted distributions with neuronal proteins during mouse embryonic development. Overexpression of HSP27 in stem cells led to the arrest of neuronal dif  ...[more]

Similar Datasets

| S-EPMC3251601 | biostudies-literature
| S-EPMC4776115 | biostudies-literature
| S-EPMC2763579 | biostudies-literature
| S-EPMC3680509 | biostudies-literature
| S-EPMC6187643 | biostudies-literature
| S-EPMC2949174 | biostudies-literature
| S-EPMC6610099 | biostudies-literature
| S-EPMC6406706 | biostudies-literature
| S-EPMC4851248 | biostudies-literature
| S-EPMC4058034 | biostudies-literature