Structure-Activity Analysis of Gram-positive Bacterium-producing Lasso Peptides with Anti-mycobacterial Activity.
Ontology highlight
ABSTRACT: Lariatin A, an 18-residue lasso peptide encoded by the five-gene cluster larABCDE, displays potent and selective anti-mycobacterial activity. The structural feature is an N-terminal macrolactam ring, through which the C-terminal passed to form the rigid lariat-protoknot structure. In the present study, we established a convergent expression system by the strategy in which larA mutant gene-carrying plasmids were transformed into larA-deficient Rhodococcus jostii, and generated 36 lariatin variants of the precursor protein LarA to investigate the biosynthesis and the structure-activity relationships. The mutational analysis revealed that four amino acid residues (Gly1, Arg7, Glu8, and Trp9) in lariatin A are essential for the maturation and production in the biosynthetic machinery. Furthermore, the study on structure-activity relationships demonstrated that Tyr6, Gly11, and Asn14 are responsible for the anti-mycobacterial activity, and the residues at positions 15, 16 and 18 in lariatin A are critical for enhancing the activity. This study will not only provide a useful platform for genetically engineering Gram-positive bacterium-producing lasso peptides, but also an important foundation to rationally design more promising drug candidates for combatting tuberculosis.
SUBMITTER: Inokoshi J
PROVIDER: S-EPMC4960549 | biostudies-literature | 2016 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA