Unknown

Dataset Information

0

Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.


ABSTRACT: Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg(R)) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg(R) captured to the chromosome in P. putida A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg(R) in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability.

SUBMITTER: Hall JP 

PROVIDER: S-EPMC4961173 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.

Hall James P J JP   Wood A Jamie AJ   Harrison Ellie E   Brockhurst Michael A MA  

Proceedings of the National Academy of Sciences of the United States of America 20160706 29


Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to pl  ...[more]

Similar Datasets

| S-EPMC5584672 | biostudies-literature
| S-EPMC4761763 | biostudies-literature
| S-EPMC7133523 | biostudies-literature
| S-EPMC7259817 | biostudies-literature
| S-EPMC4971209 | biostudies-literature
| S-EPMC6716449 | biostudies-literature
2020-12-31 | GSE135153 | GEO
| S-EPMC6194010 | biostudies-literature
| S-EPMC6864514 | biostudies-literature
| S-EPMC4023943 | biostudies-literature