ABSTRACT: Mitigation to offset the impacts of land development is becoming increasingly common, with reintroductions and created habitat programs used as key actions. However, numerous reviews cite high rates of poor success from these programs, and a need for improved monitoring and scientific testing to evaluate outcomes and improve management actions. We conducted extensive monitoring of a released population of endangered green and golden bell frogs, Litoria aurea, within a created habitat, as well as complementary surveys of a surrounding wild population. We then compared differences between the created habitat and natural ponds where extant frogs either bred or didn't breed in order to determine factors that contributed to the breeding failure within the created habitat. We evaluated differences of L. aurea abundance, abundance of other fauna, vegetation, water quality, habitat structure, invasive fish, and disease between the three pond types (created habitat, breeding ponds, non-breeding ponds). We discovered that vegetation and invertebrate diversity were low within the created habitat, potentially reducing energy and nutritional resources required for breeding. Also, a greater proportion of frogs in the created habitat were carrying the chytrid fungal pathogen, Batrachochytrium dendrobatidis, compared to the wild populations. In addition to causing the potentially fatal disease, chytridiomycosis, this pathogen has been shown to reduce reproductive functioning in male L. aurea, and subsequently may have reduced reproductive activities in the created habitat. Conspecific attraction, pond hydrology, and aquatic vegetation may also have had some influence on breeding behaviours, whilst the presence of the invasive mosquitofish, Gambusia holbrooki, and heterospecific tadpoles were unlikely to have deterred L. aurea from breeding within the created habitat. Through the use of scientific testing and monitoring, this study is able to make recommendations for future amphibian breed and release programs, and suggests planting a diversity of plant species to attract invertebrates, creating some permanent ponds, connecting habitat with existing populations, trialling artificial mating calls, and following recommendations to reduce the prevalence of disease within the population.