Unknown

Dataset Information

0

Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells.


ABSTRACT: Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.

SUBMITTER: Rojo L 

PROVIDER: S-EPMC4965747 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Self-assembled monolayers of alendronate on Ti6Al4V alloy surfaces enhance osteogenesis in mesenchymal stem cells.

Rojo Luis L   Gharibi Borzo B   McLister Robert R   Meenan Brian J BJ   Deb Sanjukta S  

Scientific reports 20160729


Phosphonates have emerged as an alternative for functionalization of titanium surfaces by the formation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelec  ...[more]

Similar Datasets

| S-EPMC5389194 | biostudies-literature
| S-EPMC4778531 | biostudies-literature
| S-EPMC5704293 | biostudies-literature
| S-EPMC2787851 | biostudies-literature
| S-EPMC4273226 | biostudies-literature
| S-EPMC6356479 | biostudies-literature
| S-EPMC3165144 | biostudies-literature
| S-EPMC3096993 | biostudies-literature
| S-EPMC5455923 | biostudies-other
| S-EPMC8698454 | biostudies-literature