Unknown

Dataset Information

0

Shotgun Analysis of Rough-Type Lipopolysaccharides Using Ultraviolet Photodissociation Mass Spectrometry.


ABSTRACT: Detailed structural characterization of intact rough-type lipopolysaccharides (R-LPS) was accomplished using a multi-stage mass spectrometry (MS(3)) strategy consisting of collision-induced dissociation (CID) followed by 193 ultraviolet photodissociation (UVPD) implemented on an Orbitrap Fusion mass spectrometer. Complex mixtures of R-LPS from either Escherichia coli or Salmonella enterica were directly infused into the mass spectrometer using static source nanoelectrospray ionization (nanoESI). An initial CID event performed on an R-LPS precursor produced spectra with abundant ions corresponding to the lipid A and core oligosaccharide (OS) substructures. Comparison of CID spectra of R-LPS ions with varying lipid A and core OS structures verifies that lipid A and core OS ions are consistently produced in high abundance. The resulting lipid A and core OS ions were subsequently activated by CID, high-energy collision-induced dissociation (HCD), or UVPD. For both the lipid A and core OS substructures, HCD and UVPD produced highly informative complementary spectra, with UVPD of the core OS producing an extensive array of cross-ring cleavage fragments. Successful discernment of E. coli R-LPS structures with isomeric core structures confirmed the degree to which subtle structural differences could be determined using this method.

SUBMITTER: Klein DR 

PROVIDER: S-EPMC4970217 | biostudies-literature | 2016 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Shotgun Analysis of Rough-Type Lipopolysaccharides Using Ultraviolet Photodissociation Mass Spectrometry.

Klein Dustin R DR   Holden Dustin D DD   Brodbelt Jennifer S JS  

Analytical chemistry 20151210 1


Detailed structural characterization of intact rough-type lipopolysaccharides (R-LPS) was accomplished using a multi-stage mass spectrometry (MS(3)) strategy consisting of collision-induced dissociation (CID) followed by 193 ultraviolet photodissociation (UVPD) implemented on an Orbitrap Fusion mass spectrometer. Complex mixtures of R-LPS from either Escherichia coli or Salmonella enterica were directly infused into the mass spectrometer using static source nanoelectrospray ionization (nanoESI).  ...[more]

Similar Datasets

| S-EPMC7145764 | biostudies-literature
| S-EPMC4351866 | biostudies-literature
| S-EPMC5480246 | biostudies-literature
| S-EPMC4108549 | biostudies-literature
| S-EPMC3757099 | biostudies-literature
| S-EPMC9172568 | biostudies-literature
| S-EPMC4270407 | biostudies-literature
| S-EPMC8377746 | biostudies-literature
| S-EPMC10666081 | biostudies-literature
| S-EPMC10349945 | biostudies-literature