Unknown

Dataset Information

0

A framework for smartphone-enabled, patient-generated health data analysis.


ABSTRACT:

Background

Digital medicine and smartphone-enabled health technologies provide a novel source of human health and human biology data. However, in part due to its intricacies, few methods have been established to analyze and interpret data in this domain. We previously conducted a six-month interventional trial examining the efficacy of a comprehensive smartphone-based health monitoring program for individuals with chronic disease. This included 38 individuals with hypertension who recorded 6,290 blood pressure readings over the trial.

Methods

In the present study, we provide a hypothesis testing framework for unstructured time series data, typical of patient-generated mobile device data. We used a mixed model approach for unequally spaced repeated measures using autoregressive and generalized autoregressive models, and applied this to the blood pressure data generated in this trial.

Results

We were able to detect, roughly, a 2 mmHg decrease in both systolic and diastolic blood pressure over the course of the trial despite considerable intra- and inter-individual variation. Furthermore, by supplementing this finding by using a sequential analysis approach, we observed this result over three months prior to the official study end-highlighting the effectiveness of leveraging the digital nature of this data source to form timely conclusions.

Conclusions

Health data generated through the use of smartphones and other mobile devices allow individuals the opportunity to make informed health decisions, and provide researchers the opportunity to address innovative health and biology questions. The hypothesis testing framework we present can be applied in future studies utilizing digital medicine technology or implemented in the technology itself to support the quantified self.

SUBMITTER: Gollamudi SS 

PROVIDER: S-EPMC4975026 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

A framework for smartphone-enabled, patient-generated health data analysis.

Gollamudi Shreya S SS   Topol Eric J EJ   Wineinger Nathan E NE  

PeerJ 20160802


<h4>Background</h4>Digital medicine and smartphone-enabled health technologies provide a novel source of human health and human biology data. However, in part due to its intricacies, few methods have been established to analyze and interpret data in this domain. We previously conducted a six-month interventional trial examining the efficacy of a comprehensive smartphone-based health monitoring program for individuals with chronic disease. This included 38 individuals with hypertension who record  ...[more]

Similar Datasets

| S-EPMC6550195 | biostudies-literature
| 2347952 | ecrin-mdr-crc
| S-EPMC6786846 | biostudies-literature
| S-EPMC7647206 | biostudies-literature
| S-EPMC5528746 | biostudies-other
| S-EPMC8190646 | biostudies-literature
| S-EPMC7309248 | biostudies-literature
| S-EPMC6697140 | biostudies-literature
| S-EPMC7054258 | biostudies-literature
| S-EPMC6914107 | biostudies-literature