Unknown

Dataset Information

0

The modularity and dynamicity of miRNA-mRNA interactions in high-grade serous ovarian carcinomas and the prognostic implication.


ABSTRACT: Ovarian carcinoma is the fifth-leading cause of cancer death among women in the United States. Major reasons for this persistent mortality include the poor understanding of the underlying biology and a lack of reliable biomarkers. Previous studies have shown that aberrantly expressed MicroRNAs (miRNAs) are involved in carcinogenesis and tumor progression by post-transcriptionally regulating gene expression. However, the interference of miRNAs in tumorigenesis is quite complicated and far from being fully understood. In this work, by an integrative analysis of mRNA expression, miRNA expression and clinical data published by The Cancer Genome Atlas (TCGA), we studied the modularity and dynamicity of miRNA-mRNA interactions and the prognostic implications in high-grade serous ovarian carcinomas. With the top transcriptional correlations (Bonferroni-adjusted p-value<0.01) as inputs, we identified five miRNA-mRNA module pairs (MPs), each of which included one positive-connection (correlation) module and one negative-connection (correlation) module. The number of miRNAs or mRNAs in each module varied from 3 to 7 or from 2 to 873. Among the four major negative-connection modules, three fit well with the widely accepted miRNA-mediated post-transcriptional regulation theory. These modules were enriched with the genes relevant to cell cycle and immune response. Moreover, we proposed two novel algorithms to reveal the group or sample specific dynamic regulations between these two RNA classes. The obtained miRNA-mRNA dynamic network contains 3350 interactions captured across different cancer progression stages or tumor grades. We found that those dynamic interactions tended to concentrate on a few miRNAs (e.g. miRNA-936), and were more likely present on the miRNA-mRNA pairs outside the discovered modules. In addition, we also pinpointed a robust prognostic signature consisting of 56 modular protein-coding genes, whose co-expression patterns were predictive for the survival time of ovarian cancer patients in multiple independent cohorts.

SUBMITTER: Zhang W 

PROVIDER: S-EPMC4976019 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

The modularity and dynamicity of miRNA-mRNA interactions in high-grade serous ovarian carcinomas and the prognostic implication.

Zhang Wensheng W   Edwards Andrea A   Fan Wei W   Flemington Erik K EK   Zhang Kun K  

Computational biology and chemistry 20160227


Ovarian carcinoma is the fifth-leading cause of cancer death among women in the United States. Major reasons for this persistent mortality include the poor understanding of the underlying biology and a lack of reliable biomarkers. Previous studies have shown that aberrantly expressed MicroRNAs (miRNAs) are involved in carcinogenesis and tumor progression by post-transcriptionally regulating gene expression. However, the interference of miRNAs in tumorigenesis is quite complicated and far from be  ...[more]

Similar Datasets

| S-EPMC11014847 | biostudies-literature
| S-EPMC5653668 | biostudies-literature
| S-EPMC4762194 | biostudies-literature
| S-EPMC4320586 | biostudies-literature
| S-EPMC2736318 | biostudies-literature
| S-EPMC4782211 | biostudies-literature
| S-EPMC10618212 | biostudies-literature
| S-EPMC7281678 | biostudies-literature
2014-10-01 | GSE57280 | GEO