Project description:Paraneoplastic neurologic syndromes (PNSs) are a heterogeneous group of disorders caused by the remote effects of cancer with immune-mediated pathogenesis. Anti-Ma2 antibody was defined as one of the well-characterized onconeural antibodies that could help establish a definite PNS diagnosis. We aimed to report and explore patients with anti-Ma2 antibody-associated paraneoplastic neurologic syndrome (Ma2-PNS) who frequently exhibit sensorimotor neuropathy (SMN) using a new method of factor analysis of mixed data (FAMD). Clinical data from a case series of eight patients with definite diagnoses were retrospectively reviewed. FAMD conducted further analyses with a comprehensive visualization in R software. Our cohort, with a predominance of females (5/8), presented more frequently with SMN (4/8), followed by limbic encephalitis (LE) (3/8). Two patients with LE were found to have a testicular germ-cell tumor and a thymoma, respectively. In addition, a patient who developed chronic SMN was diagnosed with multiple myeloma (MM) involving multiple organs. FAMD exhibited the overall features into a two-dimensional coordinate and located each individual into their corresponding position with high relevance. It provided a clue for determining their potential relationships and predictors. Our findings indicated that Ma2-PNS could frequently involve the peripheral nervous system, MM might be one of its associated cancers with a presentation of chronic SMN, and FAMD might be a clinically valuable tool.
Project description:BackgroundThe survival benefit observed in children with neuroblastoma (NB) and minimal residual disease who received treatment with anti-GD2 monoclonal antibodies prompted our investigation into the safety and potential clinical benefits of anti-CD3×anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs). Preclinical studies demonstrated the high cytotoxicity of GD2BATs against GD2+cell lines, leading to the initiation of a phase I/II study in recurrent/refractory patients.MethodsThe 3+3 dose escalation phase I study (NCT02173093) encompassed nine evaluable patients with NB (n=5), osteosarcoma (n=3), and desmoplastic small round cell tumors (n=1). Patients received twice-weekly infusions of GD2BATs at 40, 80, or 160×106 GD2BATs/kg/infusion complemented by daily interleukin-2 (300,000 IU/m2) and twice-weekly granulocyte macrophage colony-stimulating factor (250 µg/m2). The phase II segment focused on patients with NB at the dose 3 level of 160×106 GD2BATs/kg/infusion.ResultsOf the 12 patients enrolled, 9 completed therapy in phase I with no dose-limiting toxicities. Mild and manageable cytokine release syndrome occurred in all patients, presenting as grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody-associated pain was minimal. Median overall survival (OS) for phase I and the limited phase II was 18.0 and 31.2 months, respectively, with a combined OS of 21.1 months. A phase I NB patient had a complete bone marrow response with overall stable disease. In phase II, 10 of 12 patients were evaluable: 1 achieved partial response, and 3 showed clinical benefit with prolonged stable disease. Over 50% of evaluable patients exhibited augmented immune responses to GD2+targets post-GD2BATs, as indicated by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines.ConclusionsThis study demonstrated the safety of GD2BATs up to 160×106 cells/kg/infusion. Coupled with evidence of post-treatment endogenous immune responses, our findings support further investigation of GD2BATs in larger phase II clinical trials.
Project description:Mutations of TP53 are observed in 5-10% of patients in myelodysplastic syndrome (MDS) and are associated with adverse outcomes. Previous studies indicate that the TP53 allelic state and variant allele frequency of TP53 mutation impact patient outcomes, but there is significant heterogeneity within this MDS subgroup. We performed retrospective review of clinicopathologic and genomic information of 107 patients with TP53-mutated MDS. We assessed each mutation according to the phenotypic annotation of TP53 mutations (PHANTM) and analyzed the associations between predicted TP53 mutant function, represented by the PHANTM combined phenotype score, and overall survival (OS) using the log rank test and Cox regression. Our results indicated that patients with PHANTM combined phenotype score above the median (>1) had significantly shorter OS compared to those with scores below the median (median OS: 10.59 and 16.51 months, respectively, p = 0.025). This relationship remained significant in multivariable analysis (HR (95%CI): 1.62 (1.01-2.58), p = 0.044) and identified to have an independent prognostic influence, accounting for known risk such as IPSS-R and other standard risk variables. Our results suggest that the functional information of TP53 mutations, represented by PHANTM combined phenotype score, are associated with the clinical outcome of patients with TP53-mutated MDS.
Project description:Mitochondrial proteins carrying iron-sulfur (Fe-S) clusters are involved in essential cellular pathways such as oxidative phosphorylation, lipoic acid synthesis, and iron metabolism. NFU1, BOLA3, IBA57, ISCA2, and ISCA1 are involved in the last steps of the maturation of mitochondrial [4Fe-4S]-containing proteins. Since 2011, mutations in their genes leading to five multiple mitochondrial dysfunction syndromes (MMDS types 1 to 5) were reported. The aim of this systematic review is to describe all reported MMDS-patients. Their clinical, biological, and radiological data and associated genotype will be compared to each other. Despite certain specific clinical elements such as pulmonary hypertension or dilated cardiomyopathy in MMDS type 1 or 2, respectively, nearly all of the patients with MMDS presented with severe and early onset leukoencephalopathy. Diagnosis could be suggested by high lactate, pyruvate, and glycine levels in body fluids. Genetic analysis including large gene panels (Next Generation Sequencing) or whole exome sequencing is needed to confirm diagnosis.
Project description:ObjectiveTo report the CNS syndromes of patients ?60 years of age with antibodies against neuronal surface antigens but no evidence of brain MRI and CSF inflammatory changes.MethodsThis was a retrospective clinical analysis of patients with antibodies against neuronal surface antigens who fulfilled 3 criteria: age ?60 years, no inflammatory abnormalities in brain MRI, and no CSF pleocytosis. Antibodies were determined with reported techniques.ResultsAmong 155 patients ?60 years of age with neurologic syndromes related to antibodies against neuronal surface antigens, 35 (22.6%) fulfilled the indicated criteria. The median age of these 35 patients was 68 years (range 60-88 years). Clinical manifestations included faciobrachial dystonic seizures (FBDS) in 11 of 35 (31.4%) patients, all with LGI1 antibodies; a combination of gait instability, brainstem dysfunction, and sleep disorder associated with IgLON5 antibodies in 10 (28.6%); acute confusion, memory loss, and behavioral changes suggesting autoimmune encephalitis (AE) in 9 (25.7%; 2 patients with AMPAR, 2 with NMDAR, 2 with GABAbR, 2 with LGI1, and 1 with CASPR2 antibodies); and rapidly progressive cognitive deterioration in 5 (14.3%; 3 patients with IgLON5 antibodies, 1 with chorea; 1 with DPPX antibody-associated cerebellar ataxia and arm rigidity; and 1 with CASPR2 antibodies).ConclusionsIn patients ?60 years of age, the correct identification of characteristic CNS syndromes (FBDS, anti-IgLON5 syndrome, AE) should prompt antibody testing even without evidence of inflammation in MRI and CSF studies. Up to 15% of the patients developed rapidly progressive cognitive deterioration, which further complicated the differential diagnosis with a neurodegenerative disorder.
Project description:Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ?0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS.
Project description:The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have expanded our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient's endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions.
Project description:The relationship between antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and lung cancer remains unclear. A 66-year-old man presented with pulmonary nodules. Histological examination of a specimen from computed tomography-guided percutaneous transthoracic biopsy revealed adenocarcinoma. The patient was treated using cryoablation and systemic chemotherapy. Sixteen months later, the patient presented with fever, nasal inflammation, recurrent lung lesions, elevated serum creatinine levels, and high levels of ANCA. Histological examination of a specimen from ultrasound-guided percutaneous renal biopsy revealed pauci-immune necrotizing crescentic glomerulonephritis. The patient responded to treatment, but granulomatosis with polyangiitis recurred and he later died. This case highlights the possibility of sequential AAV with lung cancer. Although this is relatively rare, further research is needed to better understand the association or pathophysiological link between lung cancer and AAV.
Project description:Alterations in DNA methylation have been implicated in the pathogenesis of myelodysplastic syndromes (MDS), although the underlying mechanism remains largely unknown. Methylation of CpG dinucleotides is mediated by DNA methyltransferases, including DNMT1, DNMT3A and DNMT3B. DNMT3A mutations have recently been reported in patients with de novo acute myeloid leukemia (AML), providing a rationale for examining the status of DNMT3A in MDS samples. In this study, we report the frequency of DNMT3A mutations in patients with de novo MDS, and their association with secondary AML. We sequenced all coding exons of DNMT3A using DNA from bone marrow and paired normal cells from 150 patients with MDS and identified 13 heterozygous mutations with predicted translational consequences in 12/150 patients (8.0%). Amino acid R882, located in the methyltransferase domain of DNMT3A, was the most common mutation site, accounting for 4/13 mutations. DNMT3A mutations were expressed in the majority of cells in all tested mutant samples regardless of myeloblast counts, suggesting that DNMT3A mutations occur early in the course of MDS. Patients with DNMT3A mutations had worse overall survival compared with patients without DNMT3A mutations (P=0.005) and more rapid progression to AML (P=0.007), suggesting that DNMT3A mutation status may have prognostic value in de novo MDS.