The genome-scale DNA-binding profile of BarR, a ?-alanine responsive transcription factor in the archaeon Sulfolobus acidocaldarius.
Ontology highlight
ABSTRACT: The Leucine-responsive Regulatory Protein (Lrp) family is a widespread family of regulatory transcription factors in prokaryotes. BarR is an Lrp-like transcription factor in the model archaeon Sulfolobus acidocaldarius that activates the expression of a ?-alanine aminotransferase gene, which is involved in ?-alanine degradation. In contrast to classical Lrp-like transcription factors, BarR is not responsive to any of the ?-amino acids but interacts specifically with ?-alanine. Besides the juxtaposed ?-alanine aminotransferase gene, other regulatory targets of BarR have not yet been identified although ?-alanine is the precursor of coenzyme A and thus an important central metabolite. The aim of this study is to extend the knowledge of the DNA-binding characteristics of BarR and of its corresponding regulon from a local to a genome-wide perspective.We characterized the genome-wide binding profile of BarR using chromatin immunoprecipation combined with high-throughput sequencing (ChIP-seq). This revealed 21 genomic binding loci. High-enrichment binding regions were validated to interact with purified BarR protein in vitro using electrophoretic mobility shift assays and almost all targets were also shown to harbour a conserved semi-palindromic binding motif. Only a small subset of enriched genomic sites are located in intergenic regions at a relative short distance to a promoter, and qRT-PCR analysis demonstrated that only one additional operon is under activation of BarR, namely the glutamine synthase operon. The latter is also a target of other Lrp-like transcription factors. Detailed inspection of the BarR ChIP-seq profile at the ?-alanine aminotransferase promoter region in combination with binding motif predictions indicate that the operator structure is more complicated than previously anticipated, consisting of multiple (major and auxiliary) operators.BarR has a limited regulon, and includes also glutamine synthase genes besides the previously characterized ?-alanine aminotransferase. Regulation of glutamine synthase is suggestive of a link between ?-alanine and ?-amino acid metabolism in S. acidocaldarius. Furthermore, this work reveals that the BarR regulon overlaps with that of other Lrp-like regulators.
SUBMITTER: Liu H
PROVIDER: S-EPMC4977709 | biostudies-literature | 2016 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA