Unknown

Dataset Information

0

HIV Genome-Wide Protein Associations: a Review of 30 Years of Research.


ABSTRACT: The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.

SUBMITTER: Li G 

PROVIDER: S-EPMC4981665 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

HIV Genome-Wide Protein Associations: a Review of 30 Years of Research.

Li Guangdi G   De Clercq Erik E  

Microbiology and molecular biology reviews : MMBR 20160629 3


The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physi  ...[more]

Similar Datasets

| S-EPMC2628921 | biostudies-literature
| S-EPMC3534994 | biostudies-literature
| S-EPMC6780647 | biostudies-literature
| S-EPMC5922774 | biostudies-literature
| S-BSST5 | biostudies-other
| S-EPMC4415367 | biostudies-literature
2010-07-31 | GSE20536 | GEO
| S-EPMC3208564 | biostudies-literature
| S-EPMC6886375 | biostudies-literature
| S-EPMC7136965 | biostudies-literature