Unknown

Dataset Information

0

Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor.


ABSTRACT: Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to the mitochondria and that stress and corticosteroids have a direct influence on mtDNA transcription and mitochondrial physiology. To determine if stress affects mitochondrially transcribed mRNA (mtRNA) expression, we exposed adult male rats to both acute and chronic immobilization stress and examined mtRNA expression using quantitative RT-PCR. We found that acute stress had a main effect on mtRNA expression and that expression of NADH dehydrogenase 1, 3, and 6 (ND-1, ND-3, ND-6) and ATP synthase 6 (ATP-6) genes was significantly down-regulated. Chronic stress induced a significant up-regulation of ND-6 expression. Adrenalectomy abolished acute stress-induced mtRNA regulation, demonstrating GC dependence. ChIP sequencing of GR showed that corticosterone treatment induced a dose-dependent association of the GR with the control region of the mitochondrial genome. These findings demonstrate GR and stress-dependent transcriptional regulation of the mitochondrial genome in vivo and are consistent with previous work linking stress and GCs with changes in the function of brain mitochondria.

SUBMITTER: Hunter RG 

PROVIDER: S-EPMC4987818 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor.

Hunter Richard G RG   Seligsohn Ma'ayan M   Rubin Todd G TG   Griffiths Brian B BB   Ozdemir Yildirim Y   Pfaff Donald W DW   Datson Nicole A NA   McEwen Bruce S BS  

Proceedings of the National Academy of Sciences of the United States of America 20160725 32


Glucocorticoids (GCs) are involved in stress and circadian regulation, and produce many actions via the GC receptor (GR), which is classically understood to function as a nuclear transcription factor. However, the nuclear genome is not the only genome in eukaryotic cells. The mitochondria also contain a small circular genome, the mitochondrial DNA (mtDNA), that encodes 13 polypeptides. Recent work has established that, in the brain and other systems, the GR is translocated from the cytosol to th  ...[more]

Similar Datasets

| S-EPMC3373303 | biostudies-literature
| S-EPMC4881047 | biostudies-literature
| S-EPMC9307850 | biostudies-literature
| S-EPMC4398338 | biostudies-literature
| S-EPMC7519233 | biostudies-literature
2016-07-09 | GSE84202 | GEO
| S-EPMC8244946 | biostudies-literature
| S-SCDT-EMBOR-2021-54195-T | biostudies-other
| S-EPMC4981361 | biostudies-literature
| S-EPMC8415150 | biostudies-literature