Unknown

Dataset Information

0

Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI.


ABSTRACT:

Aims

4D flow magnetic resonance imaging (MRI) allows quantitative assessment of left ventricular (LV) function according to characteristics of the dynamic flow in the chamber. Marked abnormalities in flow components' volume and kinetic energy (KE) have previously been demonstrated in moderately dilated and depressed LV's compared to healthy subjects. We hypothesized that these 4D flow-based measures would detect even subtle LV dysfunction and remodeling.

Methods and results

We acquired 4D flow and morphological MRI data from 26 patients with chronic ischemic heart disease with New York Heart Association (NYHA) class I and II and with no to mild LV systolic dysfunction and remodeling, and from 10 healthy controls. A previously validated method was used to separate the LV end-diastolic volume (LVEDV) into functional components: direct flow, which passes directly to ejection, and non-ejecting flow, which remains in the LV for at least 1 cycle. The direct flow and non-ejecting flow proportions of end-diastolic volume and KE were assessed. The proportions of direct flow volume and KE fell with increasing LVEDV-index (LVEDVI) and LVESV-index (LVESVI) (direct flow volume r = -0.64 and r = -0.74, both P<0.001; direct flow KE r = -0.48, P = 0.013, and r = -0.56, P = 0.003). The proportions of non-ejecting flow volume and KE rose with increasing LVEDVI and LVESVI (non-ejecting flow volume: r = 0.67 and r = 0.76, both P<0.001; non-ejecting flow KE: r = 0.53, P = 0.005 and r = 0.52, P = 0.006). The proportion of direct flow volume correlated moderately to LVEF (r = 0.68, P < 0.001) and was higher in a sub-group of patients with LVEDVI >74 ml/m2 compared to patients with LVEDVI <74 ml/m2 and controls (both P<0.05).

Conclusion

Direct flow volume and KE proportions diminish with increased LV volumes, while non-ejecting flow proportions increase. A decrease in direct flow volume and KE at end-diastole proposes that alterations in these novel 4D flow-specific markers may detect LV dysfunction even in subtle or subclinical LV remodeling.

SUBMITTER: Svalbring E 

PROVIDER: S-EPMC4988651 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI.

Svalbring Emil E   Fredriksson Alexandru A   Eriksson Jonatan J   Dyverfeldt Petter P   Ebbers Tino T   Bolger Ann F AF   Engvall Jan J   Carlhäll Carl-Johan CJ  

PloS one 20160817 8


<h4>Aims</h4>4D flow magnetic resonance imaging (MRI) allows quantitative assessment of left ventricular (LV) function according to characteristics of the dynamic flow in the chamber. Marked abnormalities in flow components' volume and kinetic energy (KE) have previously been demonstrated in moderately dilated and depressed LV's compared to healthy subjects. We hypothesized that these 4D flow-based measures would detect even subtle LV dysfunction and remodeling.<h4>Methods and results</h4>We acq  ...[more]

Similar Datasets

| S-EPMC6158175 | biostudies-literature
| S-EPMC6117925 | biostudies-literature
| S-EPMC10463519 | biostudies-literature
| S-EPMC7569817 | biostudies-literature
| S-EPMC2831022 | biostudies-literature
| S-EPMC6132722 | biostudies-literature
| S-EPMC7303161 | biostudies-literature
| S-EPMC5441386 | biostudies-literature
| S-EPMC6302263 | biostudies-other
| S-EPMC8314539 | biostudies-literature