Overcoming Spatial and Temporal Barriers to Public Access Defibrillators Via Optimization.
Ontology highlight
ABSTRACT: Immediate access to an automated external defibrillator (AED) increases the chance of survival for out-of-hospital cardiac arrest (OHCA). Current deployment usually considers spatial AED access, assuming AEDs are available 24 h a day.The goal of this study was to develop an optimization model for AED deployment, accounting for spatial and temporal accessibility, to evaluate if OHCA coverage would improve compared with deployment based on spatial accessibility alone.This study was a retrospective population-based cohort trial using data from the Toronto Regional RescuNET Epistry cardiac arrest database. We identified all nontraumatic public location OHCAs in Toronto, Ontario, Canada (January 2006 through August 2014) and obtained a list of registered AEDs (March 2015) from Toronto Paramedic Services. Coverage loss due to limited temporal access was quantified by comparing the number of OHCAs that occurred within 100 meters of a registered AED (assumed coverage 24 h per day, 7 days per week) with the number that occurred both within 100 meters of a registered AED and when the AED was available (actual coverage). A spatiotemporal optimization model was then developed that determined AED locations to maximize OHCA actual coverage and overcome the reported coverage loss. The coverage gain between the spatiotemporal model and a spatial-only model was computed by using 10-fold cross-validation.A total of 2,440 nontraumatic public OHCAs and 737 registered AED locations were identified. A total of 451 OHCAs were covered by registered AEDs under assumed coverage 24 h per day, 7 days per week, and 354 OHCAs under actual coverage, representing a coverage loss of 21.5% (p < 0.001). Using the spatiotemporal model to optimize AED deployment, a 25.3% relative increase in actual coverage was achieved compared with the spatial-only approach (p < 0.001).One in 5 OHCAs occurred near an inaccessible AED at the time of the OHCA. Potential AED use was significantly improved with a spatiotemporal optimization model guiding deployment.
Journal of the American College of Cardiology 20160801 8
<h4>Background</h4>Immediate access to an automated external defibrillator (AED) increases the chance of survival for out-of-hospital cardiac arrest (OHCA). Current deployment usually considers spatial AED access, assuming AEDs are available 24 h a day.<h4>Objectives</h4>The goal of this study was to develop an optimization model for AED deployment, accounting for spatial and temporal accessibility, to evaluate if OHCA coverage would improve compared with deployment based on spatial accessibilit ...[more]
Project description:Among the different indicators that quantify the spread of an epidemic such as the on-going COVID-19, stands first the reproduction number which measures how many people can be contaminated by an infected person. In order to permit the monitoring of the evolution of this number, a new estimation procedure is proposed here, assuming a well-accepted model for current incidence data, based on past observations. The novelty of the proposed approach is twofold: 1) the estimation of the reproduction number is achieved by convex optimization within a proximal-based inverse problem formulation, with constraints aimed at promoting piecewise smoothness; 2) the approach is developed in a multivariate setting, allowing for the simultaneous handling of multiple time series attached to different geographical regions, together with a spatial (graph-based) regularization of their evolutions in time. The effectiveness of the approach is first supported by simulations, and two main applications to real COVID-19 data are then discussed. The first one refers to the comparative evolution of the reproduction number for a number of countries, while the second one focuses on French departments and their joint analysis, leading to dynamic maps revealing the temporal co-evolution of their reproduction numbers.
Project description:The tumor microenvironment contributes to disease progression through multiple mechanisms, including immune suppression mediated in part by fibroblast activation protein (FAP)-expressing cells. Herein, a review of FAP biology is presented, supplemented with primary data. This includes FAP expression in prostate cancer and activation of latent reservoirs of TGF-β and VEGF to produce a positive feedback loop. This collectively suggests a normal wound repair process subverted during cancer pathophysiology. There has been immense interest in targeting FAP for diagnostic, monitoring and therapeutic purposes. Until recently, this development has outpaced an understanding of the biology; impeding optimal translation into the clinic. A summary of these applications is provided with an emphasis on eliminating tumor-infiltrating FAP-positive cells to overcome stromal barriers to immuno-oncological responses.
Project description:DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.
Project description:More than 13,000 children annually in the United States and Canada under the age of 20 will be diagnosed with cancer at a mortality approaching 20% 1,2. Tumor samples obtained by autopsy provide an innovative way to study tumor progression, potentially aiding in the discovery of new treatments and increased survival rates. The purpose of this study was to identify barriers to autopsies and develop guidelines for requesting autopsies for research purposes.Families of children treated for childhood cancer were referred by patient advocacy groups and surveyed about attitudes and experiences with research autopsies. From 60 interviews, barriers to autopsy and tumor banking were identified. An additional 14 interviews were conducted with medical and scientific experts.Ninety-three percent of parents of deceased children did or would have consented to a research autopsy if presented with the option; however, only half of these families were given the opportunity to donate autopsy tissue for research. The most significant barriers were the physicians' reluctance to ask a grieving family and lack of awareness about research opportunities.The value of donating tumor samples to research via an autopsy should be promoted to all groups managing pediatric cancer patients. Not only does autopsy tumor banking offer a potentially important medical and scientific impact, but the opportunity to contribute this Legacy Gift of autopsy tumor tissue also creates a positive outlet for the grieving family. Taking these findings into account, our multidisciplinary team has developed a curriculum addressing key barriers.
Project description:AIM:This paper seeks to describe best practices for conducting cross-language research with individuals who have a language barrier. DESIGN:Discussion paper. DATA SOURCES:Research methods papers addressing cross-language research issues published between 2000-2017. IMPLICATIONS FOR NURSING:Rigorous cross-language research involves the appropriate use of interpreters during the research process, systematic planning for how to address the language barrier between participant and researcher and the use of reliably and validly translated survey instruments (when applicable). Biases rooted in those who enter data into "big data" systems may influence data quality and analytic approaches in large observational studies focused on linking patient language preference to health outcomes. CONCLUSION:Cross-language research methods can help ensure that those individuals with language barriers have their voices contributing to the evidence informing healthcare practice and policies that shape health services implementation and financing. Understanding the inherent conscious and unconscious biases of those conducting research with this population and how this may emerge in research studies is also an important part of producing rigorous, reliable, and valid cross-language research. IMPACT:This study synthesized methodological recommendations for cross-language research studies with the goal to improve the quality of future research and expand the evidence-base for clinical practice. Clear methodological recommendations were generated that can improve research rigor and quality of cross-language qualitative and quantitative studies. The recommendations generated here have the potential to have an impact on the health and well-being of migrants around the world.
Project description:HLA (Human Leucocyte Antigen) sensitization is a significant barrier to successful kidney transplantation. It often translates into difficult crossmatch before transplant and increased risk of acute and chronic antibody mediated rejection after transplant. Over the last decade, several immunomodulatory therapies have emerged allowing for increased access to kidney transplantation for the immunologically disadvantaged group of HLA sensitized end stage kidney disease patients. These include IgG inactivating agents, anti-cytokine antibodies, costimulatory molecule blockers, complement inhibitors, and agents targeting plasma cells. In this review, we discuss currently available agents for desensitization and provide a brief analysis of data on novel biologics, which will likely improve desensitization outcomes, and have potential implications in treatment of antibody mediated rejection.
Project description:This commentary focuses on the issues of statistical power, the usefulness of hypothesis-free approaches such as in genome-wide association explorations, the necessity of expanding the research beyond common DNA variants, the advantage of combining transcriptomics with genomics, and the complexities inherent to the search for links between genotype and phenotype in exercise genomics research.
Project description:Immunotherapy has emerged as an unprecedented hope for the treatment of notoriously refractory cancers. Numerous investigational drugs and immunotherapy-including combination regimens are under preclinical and clinical investigation. However, only a small patient subpopulation across different types of cancer responds to the therapy due to the presence of several mechanisms of resistance. There have been extensive efforts to overcome this limitation and to expand the patient population that could be benefited by this state-of-the-art therapeutic modality. Among various causes of the resistance, we here focus on physical stromal barriers that impede the access of immunotherapeutic drug molecules and/or native and engineered immune cells to cancer tissues and cells. Two primary stromal barriers that contribute to the resistance include aberrant tumor vasculatures and excessive extracellular matrix build-ups that restrict extravasation and infiltration, respectively, of molecular and cellular immunotherapeutic agents into tumor tissues. Here, we review the features of these barriers that limit the efficacy of immunotherapy and discuss recent advances that could potentially help immunotherapy overcome the barriers and improve therapeutic outcomes.
Project description:MS data for the verification of metabolic incorporation of δ-photolysine, calculation for the crosslinking distance by DegP crosslinking, and the proteomics analysis for the dynamic direct interactome of NPM1 as well as the SG-specific interactomes of SARS-CoV-2 Nucleocapsid protein and YTHDF1/2.
Project description:The savannas of the Kenya-Tanzania borderland cover >100,000 km2 and is one of the most important regions globally for biodiversity conservation, particularly large mammals. The region also supports >1 million pastoralists and their livestock. In these systems, resources for both large mammals and pastoralists are highly variable in space and time and thus require connected landscapes. However, ongoing fragmentation of (semi-)natural vegetation by smallholder fencing and expansion of agriculture threatens this social-ecological system. Spatial data on fences and agricultural expansion are localized and dispersed among data owners and databases. Here, we synthesized data from several research groups and conservation NGOs and present the first release of the Landscape Dynamics (landDX) spatial-temporal database, covering ~30,000 km2 of southern Kenya. The data includes 31,000 livestock enclosures, nearly 40,000 kilometres of fencing, and 1,500 km2 of agricultural land. We provide caveats and interpretation of the different methodologies used. These data are useful to answer fundamental ecological questions, to quantify the rate of change of ecosystem function and wildlife populations, for conservation and livestock management, and for local and governmental spatial planning.