Project description:The purpose of this study was to investigate the occurrence of plasmid-mediated colistin resistance gene mcr-1 in Enterobacteriaceae isolates from companion animals in Guangzhou, China. Enterobacteriaceae isolated from 180 samples collected from cats and dogs were screened for mcr-1 by PCR and sequencing. MCR-1-producing isolates were further characterized by multilocus sequence typing and pulsed-field gel electrophoresis (PFGE). Plasmid characterization was performed by conjugation, replicon typing, S1-PFGE, and Southern blot hybridization. Plasmid pHN6DS2 as a representative IncN1-IncHI2/ST3 plasmid from ST93 E. coli was fully sequenced. pHN6DS2-like plasmids were screened by PCR-mapping and sequencing. The mcr-1 gene was detected in 6.25% (8/128) Escherichia coli isolates, of which, five belonged to E. coli ST93 and had identical PFGE patterns, resistance profiles and resistance genes. mcr-1 genes were located on ∼244.4 kb plasmids (n = 6), ∼70 kb plasmids, and ∼60 kb plasmids, respectively. Among them, five mcr-1-carrying plasmids were successfully transferred to recipient by conjugation experiments, and were classified as IncN1-IncHI2/ST3 (∼244.4 kb, n = 4, all obtained from E. coli ST93), and IncI2 (∼70 kb, n = 1), respectively. Plasmid pHN6DS2 contained a typical IncHI2-type backbone, with IncN1 segment (ΔrepA-Iterons I-gshB-ΔIS1294) inserted into the multiresistance region, and was similar to other mcr-1-carrying IncHI2/ST3 plasmids from Enterobacteriaceae isolates of various origins in China. The remaining five mcr-1-bearing plasmids with sizes of ∼244.4 kb were identified to be pHN6DS2-like plasmids. In conclusion, clonal spread of ST93 E. coli isolates was occurred in companion animals in Guangzhou, China.
Project description:Carbapenem and colistin are important antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. Here, we isolated the blaNDM-5-harboring Escherichia coli in companion animals in healthy or diseased companion animals from veterinary clinics in six cities in China from July to November 2016. A total of 129 rectal swabs of healthy or diseased dogs and cats were collected from veterinary clinics in six different cities in China, and the isolates were subjected to carbapenem and colistin susceptibility testing. Resistance genes were confirmed using PCR. Conjugation experiments were conducted to determine the transferability of antibiotic resistance genes (ARGs) in the strains. The isolated rate of blaNDM-5-harboring E. coli strains was 3.88% (five strains). These five strains were multidrug resistant to at least three antibiotics and corresponded to four sequence types including ST101. The blaNDM-5 gene was located on 46 kb IncX3 plasmids in these five strains, and the genetic contexts were shared and were nearly identical to the K. pneumoniae plasmid pNDM5-IncX3 from China. In addition, one strain (CQ6-1) co-harbored blaNDM-5-encoding-IncX3 plasmid along with a mcr-1-encoding-IncX4 plasmid, and their corresponding genetic environments were identical to the blaNDM-5-IncX3 and mcr-1-IncX4 hybrid plasmid reported previously from the same area and from the same clinic. The results indicated that the similar genetic contexts were shared between these isolates from companion animals, and the IncX3-type plasmids played a key role in the spread of blaNDM-5 among these bacteria.
Project description:Our aim in this report was to describe the characteristics of the first clinical isolate of Escherichia coli (EC-PAG-733) harboring the mcr-1 gene found in Mexico. This isolate was obtained from a fecal sample from a young child with an oncological condition. We obtained the whole-genome sequence using next-generation sequencing and analyzed the sequence by bioinformatics tools. EC-PAG-733 was resistant to third- and fourth-generation cephalosporins and was susceptible to all carbapenems and amikacin; it was also resistant to ciprofloxacin, levofloxacin, gentamicin and colistin at a minimum inhibitory concentration (MIC) of 4 μg/mL. This isolate was classified as O11:H25-ST457. EC-PAG-733 harbored an ESBL type CTX-M-55 as well as several virulence factors that have been associated with Enteroaggregative Escherichia coli (EAEC). The mcr-1 gene was located within an IncI2 plasmid. The results of this whole genome shotgun project were deposited in DDBJ/ENA/GenBank under the accession number QKXE00000000.
Project description:To investigate the prevalence of the recently emerging colistin resistance gene mcr-1 in Enterobacteriaceae among companion animals, we examined 566 isolates collected from cats and dogs in Beijing, China, during 2012-2016. Of these isolates, 49 (8.7%) were mcr-1-positive.
Project description:We report isolation of a New Delhi metallo-β-lactamase-5-producing carbapenem-resistant Escherichia coli sequence type 167 from companion animals in the United States. Reports of carbapenem-resistant Enterobacteriaceae in companion animals are rare. We describe a unique cluster of blaNDM-5-producing E. coli in a veterinary hospital.
Project description:Mobile colistin resistance (mcr) genes mediated by plasmids have widely disseminated throughout the world. Recently, 10 mcr genes (mcr-1 to mcr-10) and a large number of variants have been identified in more than 60 countries. However, only a few instances of Enterobacter cloacae complex (ECC) bearing mcr-10 from animal origin have been reported globally. The aim of this study was to fill a knowledge gap in mcr-10-positive ECC of animal origin and analyze the potential transmission trend and different characteristics between human and companion animal isolates. The mcr-10 gene was identified on a self-transmissible plasmid in the human isolate and non-transmissible plasmids in other three animal strains. mcr-10 was adjacent to a XerC-type tyrosine recombinase-gene, and various insertion sequences were located on the downstream of core conservative structure xerC-mcr-10, thus indicating this region might be a candidate for insertions of mobile genetic elements and mcr-10 might be mobilized by IS-mediated mechanisms. Moreover, phylogenetic analysis found that mcr-10-positive isolates were mainly distributed in the clade of Enterobacter roggenkampii, exhibiting significant species specificity. These findings indicated that mcr-10 has emerged among Enterobacter spp. within humans and companion animals, highlighting that the importance of taking effective control measures to monitor the dissemination and evolution of mcr genes. IMPORTANCE Colistin was considered as the last-resort drug against severe clinical infections caused by multidrug-resistant Gram-negative pathogens. Mobile colistin resistance (mcr) genes and its variants carried by plasmids have been reported in diverse niches in recent years, and yet few studies reported carriage of mcr-10 in ECC strains of companion animal origin. How plasmid-borne mcr-10 transmitted in opportunistic pathogens and different characteristics of mcr-10-bearing strains isolated from humans and companion animals are not well understood. In this study, we discovered mcr-10-harboring strains in multidrug-resistant ECC isolates of companion animal origin for the first time and conducted a comprehensive analysis of the genetic environment of mcr-10 from multiple countries around the world, providing the potential basis for formulating control measures to slow down the spread of colistin resistance.
Project description:In this study, we found mcr-1.1 and mcr-1.5 genes carried by IncI2 plasmids in a subset of Escherichia coli isolates recovered from commercial broiler farms in Argentina. The comparative analysis of the sequences of these plasmids with those described in human clinical isolates suggests that this replicon-type is one of the main mcr-disseminator sources in Argentina.
Project description:Enterobacteriaceae having chromosomally-encoded mcr-1 is rarely reported. In this study, we recovered a chromosomal mcr-1 carrying Escherichia coli, designated HeN100, from the feces of a diarrheal pig in China. Antimicrobial susceptibility testing showed that HeN100 was resistant to three aminoglycosides, twelve ?-lactams including three carbapenems, one phenicol, two tetracyclines, two fluoroquinolones, nitrofurantoin, and colistin tested. Oxford Nanopore MinION sequencing revealed that the complete genomes of the multidrug resistant (MDR) HeN100 consisted of a single circular chromosome and five circular plasmids. Bioinformatical analysis determined HeN100 as ST695 and it contained many acquired resistance genes responsible for its MDR phenotypes, including colistin resistance mcr-1 and the carbapenem resistance blaNDM-1, and most of these genes were located on plasmids. However, the mcr-1 was found on the chromosome, and it was located between an IS30-like element ISApl1 and a PAP2-like encoding gene. These three genes consisted of an "ISApl1-mcr-1-orf" segment and inserted in high AT-rich regions. Finally, we found the blaNDM-1 was carried on an IncFII type conjugative plasmid. The conjugation frequency of this plasmid was 7.61? ± 2.11 ?× ?10-5 per recipient, and its conjugation conferred resistance to carbapenems and other ?-lactams, as well as aminoglycosides. The spread of this mcr-1/blaNDM-1-carrying E. coli ST695 represents a great concern of public health.
Project description:Colistin resistance has increased due to the increasing and inappropriate use of this antibiotic. The mechanism involves modification of lipid A with phosphoethanolamine (PEtN) and/or 4-amino-4deoxy-L-arabinose (L-Ara4N). EptA and eptB catalyze the transfer of phosphoethanolamine to lipid A. In this study, gene network was constructed to find the associated genes related to colistin resistance, and further in vitro validation by transcriptional analysis was performed. In silico studies showed that eptB gene is a highly interconnected node in colistin resistance gene network. To ascertain these findings twelve colistin-resistant clinical isolates of Escherichia coli were selected in which five were harboring the plasmid-mediated mcr-1. Screening for colistin resistance was performed by broth microdilution (BMD) method and Rapid polymyxin NP test. PCR confirmed the presence of the eptA and eptB genes in all isolates and five isolates were harboring mcr-1. Transcriptional expression in five isolates harboring mcr-1, showed an enhanced expression of eptB when exposed under sub-inhibitory colistin stress. The present study for the first time highlighted genetic interplay between mcr-1 and eptA and eptB under colistin exposure.
Project description:The recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route of mcr-1 among Enterobacteriaceae species in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis of Escherichia coli isolates collected in a hospital in Hangzhou, China. We found that mcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread of mcr-1 The mcr-1 gene was found on either chromosomes or plasmids, but in most of the E. coli isolates, mcr-1 was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission of mcr-1 and the coexistence of mcr-1 with other genes encoding ?-lactamases and fluoroquinolone resistance in the E. coli isolates. These findings indicate that mcr-1 is heterogeneously disseminated in both commensal and pathogenic strains of E. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology of mcr-1 among hospital-associated E. coli strains.IMPORTANCE Colistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergent mcr-1 colistin resistance gene threatens the clinical utility of colistin and has gained global attention. How mcr-1 spreads in hospital settings remains unknown and was investigated by whole-genome sequencing of mcr-1-carrying Escherichia coli in this study. The findings revealed extraordinary flexibility of mcr-1 in its spread among genetically diverse E. coli hosts and plasmids, nosocomial transmission of mcr-1-carrying E. coli, and the continuous emergence of novel Inc types of plasmids carrying mcr-1 and new mcr-1 variants. Additionally, mcr-1 was found to be frequently associated with other genes encoding ?-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology of mcr-1 and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.