Project description:We report a case of Acetobacter indonesiensis pneumonia in a 51-year-old woman after bilateral lung transplantation. We found 2 other A. indonesiensis pneumonia cases reported in the literature. All 3 cases involved complex patients exposed to broad-spectrum antimicrobial drugs, suggesting that this pathogen may be opportunistic and highly drug-resistant.
Project description:Metachromatic leucodystrophy (MLD) is a rare inherited lysosomal disorder caused by reduced activity of the enzyme arylsulfatase A with accumulation of sulfatides in the nervous system. We report a female child affected by MLD who developed central precocious puberty (CPP). This association has not been described so far. The proposita, after normal growth and psychomotor development, at age of 30 months presented with a rapidly progressive gait disturbance with frequent falls and with loss of acquired language skills. Magnetic resonance imaging showed leukoencephalopathy. Biochemical blood essays showed a 91% reduction in the arylsulfatase A activity and genetic analysis revealed compound heterozygous mutations of the Arylsulfatase A gene, enabling diagnosis of MLD. Subsequently, the patient had further rapid deterioration of motor and cognitive functions and developed drug-resistant epilepsy. At 4 years and 7 months of age bilateral thelarche occurred. Magnetic resonance imaging showed a small pituitary gland, extensive signal changes of the brain white matter, increased choline, decreased N-acetyl-aspartate and presence of lactate on 1HMR spectroscopy. Pelvic ultrasound demonstrated a slightly augmented uterine longitudinal diameter (42 mm). The gonadotropin-releasing hormone stimulation test revealed a pubertal LH peak of 12.9 UI/l. A diagnosis of CPP was made and treatment with gonadotropin-releasing hormone agonists was initiated, with good response. In conclusion, a CPP may occur in MLD as in other metabolic diseases with white matter involvement. We hypothesize that brain accumulation of sulfatides could have interfered with the complex network regulating with the hypothalamic-pituitary axis and thus triggering CPP in our patient.
Project description:Metachromatic leukodystrophy (MLD) is a rare progressive neurological disorder, often accompanied by motor impairments that are challenging to treat. In this case series, we report the course of treatment with intrathecal baclofen (ITB), aimed at improving daily care and comfort in children and young adults with MLD. All patients with MLD in our centre on ITB treatment for a minimum of 6 months were included (n=10; 4 males, 6 females; mean age 10y 8mo [range 6-24y]). Eight patients had MLD with a predominant spastic movement disorder (sMLD) and two were mainly dyskinetic. Patients with sMLD were compared with matched patients with spastic cerebral palsy (CP). Complication rates related to ITB treatment were similar in both groups. ITB treatment course in the first 6 months after pump implantation appears to show more dose increase in most patients MLD, compared to patients with spastic CP. This may be due to the progressive disease in MLD. ITB is a feasible therapy to improve daily care and comfort in patients with MLD and should therefore be considered early. WHAT THIS PAPER ADDS: Intrathecal baclofen (ITB) is a feasible therapy to improve comfort and daily care in children and young people with metachromatic leukodystrophy (MLD). In the first 6 months of ITB treatment, MLD seems to show more dose increase compared to spastic cerebral palsy.
Project description:ObjectiveWe aimed to gain more insight into the pathomechanisms of metachromatic leukodystrophy (MLD), by comparing magnitude and direction of diffusion between patients and controls at diagnosis and during follow-up.MethodsFour late-infantile, 16 juvenile and 8 adult onset MLD patients [of which 13 considered eligible for hematopoietic cell transplantation (HCT)] and 47 controls were examined using diffusion tensor imaging. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were quantified and compared between groups using tract-based spatial statistics (TBSS). Diffusion measures were determined for normal-appearing white matter (NAWM), corpus callosum, thalamus (all based on subject-wise segmentation), and pyramidal tracts, determined with probabilistic tractography. Measures were compared between HCT-eligible patients, non-eligible patients and controls using general linear model and nonparametric permutation analyses (randomise) for TBSS data, considering family-wise error corrected p < 0.05 significant.ResultsThroughout white matter (WM), FA was decreased and MD and RD increased in both patient groups compared to controls, while AD was decreased in NAWM and corpus callosum. In the thalamus, no differences in FA were observed, but all diffusivities were increased in both patient groups. Differences were most pronounced between controls and patients non-eligible for HCT. Longitudinally (median follow-up 3.9 years), diffusion measures remained relatively stable for HCT-treated patients, but were progressively abnormal for non-eligible patients.InterpretationThe observed diffusion measures confirm that brain microstructure is changed in MLD, reflecting different pathological processes including loss of myelin and sulfatide accumulation. The observation of both increased and decreased AD probably reflects a balance between myelin and axonal loss vs. intracellular sulfatide storage in macrophages, depending on region and disease stage.
Project description:Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal disorder caused by the deficiency of arylsulfatase A (ASA), resulting in impaired degradation of sulfatide, an essential sphingolipid of myelin. The clinical manifestations of MLD are characterized by progressive demyelination and subsequent neurological symptoms resulting in severe debilitation. The availability of therapeutic options for treating MLD is limited but expanding with a number of early stage clinical trials already in progress. In the development of therapeutic approaches for MLD, scientists have been facing a number of challenges including blood-brain barrier (BBB) penetration, safety issues concerning therapies targeting the central nervous system, uncertainty regarding the ideal timing for intervention in the disease course, and the lack of more in-depth understanding of the molecular pathogenesis of MLD. Here, we discuss the current status of the different approaches to developing therapies for MLD. Hematopoietic stem cell transplantation has been used to treat MLD patients, utilizing both umbilical cord blood and bone marrow sources. Intrathecal enzyme replacement therapy and gene therapies, administered locally into the brain or by generating genetically modified hematopoietic stem cells, are emerging as novel strategies. In pre-clinical studies, different cell delivery systems including microencapsulated cells or selectively neural cells have shown encouraging results. Small molecules that are more likely to cross the BBB can be used as enzyme enhancers of diverse ASA mutants, either as pharmacological chaperones, or proteostasis regulators. Specific small molecules may also be used to reduce the biosynthesis of sulfatides, or target different affected downstream pathways secondary to the primary ASA deficiency. Given the progressive neurodegenerative aspects of MLD, also seen in other lysosomal diseases, current and future therapeutic strategies will be complementary, whether used in combination or separately at specific stages of the disease course, to produce better outcomes for patients afflicted with this devastating inherited disorder.
Project description:Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.
Project description:The genome-wide analysis of T lympocytes from 24 MLD patients and a corresponding number of matched controls reveals a list of differentially expressed genes that can be used to build classifiers that correctly classify not only patients and controls with high sensitivity and specificity, but also MLD patients into early- and late-onset clinical classes. Among the most differentially expressed genes, the class of metallothioneins shows a consistent and significant over-expression, confirmed also in affected tissues of patients and mouse models of MLD and other Lysosomal Storage Disorders, indicating metallothioneins a novel dynamic biomarker of disease progression and treatment response in this class of diseases. Moreover, gene onthology analysis performed on the microarray data suggest an involvement of stress response- and autophagy-related pathways as pathological mechanisms in MLD.