Ontology highlight
ABSTRACT: Objective
To identify adherence patterns over time and their predictors for evidence-based medications used after hospitalization for coronary heart disease (CHD).Patients and methods
We built a population-based retrospective cohort of all patients discharged after hospitalization for CHD from public hospitals in the Valencia region (Spain) during 2008 (n = 7462). From this initial cohort, we created 4 subcohorts with at least one prescription (filled or not) from each therapeutic group (antiplatelet, beta-blockers, ACEI/ARB, statins) within the first 3 months after discharge. Monthly adherence was defined as having ≥24 days covered out of 30, leading to a repeated binary outcome measure. We assessed the membership to trajectory groups of adherence using group-based trajectory models. We also analyzed predictors of the different adherence patterns using multinomial logistic regression.Results
We identified a maximum of 5 different adherence patterns: 1) Nearly-always adherent patients; 2) An early gap in adherence with a later recovery; 3) Brief gaps in medication use or occasional users; 4) A slow decline in adherence; and 5) A fast decline. These patterns represented variable proportions of patients, the descending trajectories being more frequent for the beta-blocker and ACEI/ARB cohorts (16% and 17%, respectively) than the antiplatelet and statin cohorts (10% and 8%, respectively). Predictors of poor or intermediate adherence patterns were having a main diagnosis of unstable angina or other forms of CHD vs. AMI in the index hospitalization, being born outside Spain, requiring copayment or being older.Conclusion
Distinct adherence patterns over time and their predictors were identified. This may be a useful approach for targeting improvement interventions in patients with poor adherence patterns.
SUBMITTER: Librero J
PROVIDER: S-EPMC4995009 | biostudies-literature |
REPOSITORIES: biostudies-literature