Project description:UNLABELLED:The case of a 66 year-old female - the oldest known living patient with Niemann-Pick disease type C (NP-C) who remains free of any neurological or psychiatric manifestations 18 years after presentation - is presented. An incidental finding of massive splenomegaly was detected during a routine pelvic ultrasound. The pathology report after splenectomy showed the presence of lipid-laden macrophages. Fibroblasts cultured in LDL-enriched medium revealed abnormal filipin staining consistent with cholesterol-filled vesicles and the rate of cholesterol esterification in response to stimulation of LDL-cholesterol uptake was significantly depressed at 6% of that seen in cells from normal controls, but at a level similar to that observed in an NP-C positive control. Molecular genetic testing later revealed a compound heterozygous mutant NP-C genotype comprising two previously described disease-causing mutations in the NPC1 gene, one in exon 8 (c.1133T>C [V378A]) and one in exon 13 (c.1990G>A [V664M]). These findings confirmed the diagnosis of NP-C. Only three patients with this disorder aged > 53 years have previously been reported, all of whom presented with neurological or neuropsychiatric manifestations. Our patient is the first reported NP-C patient, now in her seventh decade of life, who has to date only manifested splenomegaly. This case highlights the extreme clinical variability of NP-C, and the need to consider this disease in the differential diagnosis of organomegaly, even in the absence of neurological, psychiatric and related clinical signs. SYNOPSIS:An elderly female patient with confirmed NP-C and isolated splenomegaly has remained asymptomatic for neurological, cognitive, psychiatric or ophthalmologic abnormailities into her seventh decade of life.
Project description:Primary skin fibroblasts from four Niemann-Pick type C patients homozygous for the I1061T mutation and four control individuals were cultured under identical conditions in DMEM containing 10% fetal bovine serum. Cells were harvested at 50-70% confluency. mRNA was isolated with the FastTrack 2.0 mRNA isolation kit according to the manufacturer's instructions (Invitrogen, Carlsbad, CA). A reference RNA comprised of 10 cell lines was used as the control for each hybridized sample (Stratagene, La Jolla, CA). Both sample and reference RNAs were amplified using the MessageAmp II aRNA amplification kit (Ambion, Austin, TX). Set of arrays that are part of repeated experiments Keywords: Biological Replicate
Project description:Primary skin fibroblasts from four Niemann-Pick type C patients homozygous for the I1061T mutation and four control individuals were cultured under identical conditions in DMEM containing 10% fetal bovine serum. Cells were harvested at 50-70% confluency. mRNA was isolated with the FastTrack 2.0 mRNA isolation kit according to the manufacturer's instructions (Invitrogen, Carlsbad, CA). A reference RNA comprised of 10 cell lines was used as the control for each hybridized sample (Stratagene, La Jolla, CA). Both sample and reference RNAs were amplified using the MessageAmp II aRNA amplification kit (Ambion, Austin, TX). Set of arrays that are part of repeated experiments Biological Replicate Complex
Project description:Niemann-Pick type C (NPC) disease is a rare lysosomal storage disease caused primarily by mutations in NPC1. NPC1 encodes the lysosomal cholesterol transport protein NPC1. The most common NPC1 mutation is a missense mutation (NPC1I1061T) that causes misfolding and rapid degradation of mutant protein in the endoplasmic reticulum. Cholesterol accumulates in enlarged lysosomes as a result of decreased levels of lysosomal NPC1I1061T protein in patient cells. There is currently no cure or FDA-approved treatment for patients. We sought to identify novel compounds that decrease lysosomal cholesterol storage in NPC1I1061T/I1061T patient fibroblasts using a high-content screen with the cholesterol dye, filipin and the lysosomal marker, LAMP1. A total of 3532 compounds were screened, including 2013 FDA-approved drugs, 327 kinase inhibitors and 760 serum metabolites. Twenty-three hits were identified that decreased both filipin and LAMP1 signals. The majority of hits (16/21) were histone deacetylase (HDAC) inhibitors, a previously described class of modifiers of NPC cholesterol storage. Of the remaining hits, the antimicrobial compound, alexidine dihydrochloride had the most potent lysosomal cholesterol-reducing activity. Subsequent analyses showed that alexidine specifically increased levels of NPC1 transcript and mature protein in both control and NPC patient cells. Although unsuitable for systemic therapy, alexidine represents a unique tool compound for further NPC studies and as a potent inducer of NPC1. Together, these findings confirm the utility of high-content image-based compound screens of NPC1 patient cells and support extending the approach into larger compound collections.