Unknown

Dataset Information

0

Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance.


ABSTRACT: Limited numbers of studies demonstrated obesity-induced macrophage infiltration in skeletal muscle (SM), but dynamics of immune cell accumulation and contribution of T cells to SM insulin resistance are understudied.T cells and macrophage markers were examined in SM of obese humans by reverse transcription-PCR (RT-PCR). Mice were fed high-fat diet (HFD) for 2-24 weeks, and time course of macrophage and T-cell accumulation was assessed by flow cytometry and quantitative RT-PCR. Extramyocellular adipose tissue (EMAT) was quantified by high-resolution micro-computed tomography (CT), and correlation to T-cell number in SM was examined. CD11a-/- mice and C57BL/6 mice were treated with CD11a-neutralizing antibody to determine the role of CD11a in T-cell accumulation in SM. To investigate the involvement of Janus kinase/signal transducer and activator of transcription (JAK/STAT), the major pathway for T helper I (TH1) cytokine interferon-?, in SM and adipose tissue inflammation and insulin resistance, mice were treated with a JAK1/JAK2 inhibitor, baricitinib.Macrophage and T-cell markers were upregulated in SM of obese compared with lean humans. SM of obese mice had higher expression of inflammatory cytokines, with macrophages increasing by 2 weeks on HFD and T cells increasing by 8 weeks. The immune cells were localized in EMAT. Micro-CT revealed that EMAT expansion in obese mice correlated with T-cell infiltration and insulin resistance. Deficiency or neutralization of CD11a reduced T-cell accumulation in SM of obese mice. T cells polarized into a proinflammatory TH1 phenotype, with increased STAT1 phosphorylation in SM of obese mice. In vivo inhibition of JAK/STAT pathway with baricitinib reduced T-cell numbers and activation markers in SM and adipose tissue and improved insulin resistance in obese mice.Obesity-induced expansion of EMAT in SM was associated with accumulation and proinflammatory polarization of T cells, which may regulate SM metabolic functions through paracrine mechanisms. Obesity-associated SM 'adiposopathy' may thus have an important role in the development of insulin resistance and inflammation.

SUBMITTER: Khan IM 

PROVIDER: S-EPMC5007876 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance.

Khan I M IM   Perrard X Yd XY   Brunner G G   Lui H H   Sparks L M LM   Smith S R SR   Wang X X   Shi Z-Z ZZ   Lewis D E DE   Wu H H   Ballantyne C M CM  

International journal of obesity (2005) 20150604 11


<h4>Background/objectives</h4>Limited numbers of studies demonstrated obesity-induced macrophage infiltration in skeletal muscle (SM), but dynamics of immune cell accumulation and contribution of T cells to SM insulin resistance are understudied.<h4>Subjects/methods</h4>T cells and macrophage markers were examined in SM of obese humans by reverse transcription-PCR (RT-PCR). Mice were fed high-fat diet (HFD) for 2-24 weeks, and time course of macrophage and T-cell accumulation was assessed by flo  ...[more]

Similar Datasets

| S-EPMC6811775 | biostudies-literature
| S-EPMC10995272 | biostudies-literature
| S-EPMC4026430 | biostudies-literature
| S-EPMC4439875 | biostudies-literature
| S-EPMC5930033 | biostudies-literature
| S-EPMC1964510 | biostudies-literature
| S-EPMC6692815 | biostudies-literature
| S-EPMC4505590 | biostudies-literature
| S-EPMC3741394 | biostudies-literature
| S-EPMC2895554 | biostudies-other