Unknown

Dataset Information

0

Genetic variant in DNA repair gene GTF2H4 is associated with lung cancer risk: a large-scale analysis of six published GWAS datasets in the TRICL consortium.


ABSTRACT: DNA repair pathways maintain genomic integrity and stability, and dysfunction of DNA repair leads to cancer. We hypothesize that functional genetic variants in DNA repair genes are associated with risk of lung cancer. We performed a large-scale meta-analysis of 123,371 single nucleotide polymorphisms (SNPs) in 169 DNA repair genes obtained from six previously published genome-wide association studies (GWASs) of 12160 lung cancer cases and 16838 controls. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) using the logistic regression model and used the false discovery rate (FDR) method for correction of multiple testing. As a result, 14 SNPs had a significant odds ratio (OR) for lung cancer risk with P FDR < 0.05, of which rs3115672 in MSH5 (OR = 1.20, 95% CI = 1.14-1.27) and rs114596632 in GTF2H4 (OR = 1.19, 95% CI = 1.12-1.25) at 6q21.33 were the most statistically significant (P combined = 3.99×10(-11) and P combined = 5.40×10(-10), respectively). The MSH5 rs3115672, but not GTF2H4 rs114596632, was strongly correlated with MSH5 rs3131379 in that region (r (2) = 1.000 and r (2) = 0.539, respectively) as reported in a previous GWAS. Importantly, however, the GTF2H4 rs114596632 T, but not MSH5 rs3115672 T, allele was significantly associated with both decreased DNA repair capacity phenotype and decreased mRNA expression levels. These provided evidence that functional genetic variants of GTF2H4 confer susceptibility to lung cancer.

SUBMITTER: Wang M 

PROVIDER: S-EPMC5008248 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic variant in DNA repair gene GTF2H4 is associated with lung cancer risk: a large-scale analysis of six published GWAS datasets in the TRICL consortium.

Wang Meilin M   Liu Hongliang H   Liu Zhensheng Z   Yi Xiaohua X   Bickeboller Heike H   Hung Rayjean J RJ   Brennan Paul P   Landi Maria Teresa MT   Caporaso Neil N   Christiani David C DC   Doherty Jennifer Anne JA   Amos Christopher I CI   Wei Qingyi Q  

Carcinogenesis 20160610 9


DNA repair pathways maintain genomic integrity and stability, and dysfunction of DNA repair leads to cancer. We hypothesize that functional genetic variants in DNA repair genes are associated with risk of lung cancer. We performed a large-scale meta-analysis of 123,371 single nucleotide polymorphisms (SNPs) in 169 DNA repair genes obtained from six previously published genome-wide association studies (GWASs) of 12160 lung cancer cases and 16838 controls. We calculated odds ratios (ORs) with 95%  ...[more]

Similar Datasets

| S-EPMC6930956 | biostudies-literature
| S-EPMC3931556 | biostudies-literature
| S-EPMC4493645 | biostudies-literature
| S-EPMC8727990 | biostudies-literature
| S-EPMC8794728 | biostudies-literature
| S-EPMC11003185 | biostudies-literature
| S-EPMC4260321 | biostudies-literature
| S-EPMC7473573 | biostudies-literature
| S-EPMC4937189 | biostudies-literature