Project description:Purpose: The aim of this study is to compare the differentially expressed transcriptome of TKI resistance NSCLC cells and their parental cells Methods: mRNA profiles of the TKI-resistant NSCLC cells and their parental cells were generated by deep sequencing using Illumina HiSeq4000. Clean RNA-seq data was quantified and analyzed using the CLC genomics workbench software version 11.0 (Qiagen, Hilden, Germany). Results: In the current study, we established three EGFR-TKI-resistant cell lines and analyzed their expression profiles by RNA sequencing. We mapped about 30 million sequence reads per sample to the human genome (hg38) sequence and identified 21,463 transcripts in the parental and TKI-resistant NSCLC cells. Over 10% of the transcripts showed differential expression between the parental andTKI-resistant NSCLC cells, with a fold change ≥1.5 and p value <0.05. Transcriptome data analysis revealed the existence of significant overlaps and significant upregulation of epithelial-mesenchymal transition (EMT) pathway in the three cell lines with EGFR-TKI resistance. Conclusions: Our results showed that RNA-seq based transcriptome characterization offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within TKI-resistant NSCLC cells.
Project description:The discovery of epidermal growth-factor receptor (EGFR)-activating mutations and the introduction of oral EGFR tyrosine kinase inhibitors (EGFR-TKIs) have expanded the treatment options for patients with non-small cell lung cancer. The first two reversible EGFR-TKIs, erlotinib and gefitinib, are approved for use in the first-line setting in patients with known EGFR-activating mutations and in the second- and third-line settings for all NSCLC patients. These first-generation EGFR-TKIs improve progression-free survival when compared to chemotherapy in patients with EGFR-activating mutations in the first-line setting. However, nearly all patients develop resistance to EGFR-directed agents. There is a need for further therapy options for patients with disease progression after treatment with reversible EGFR-TKIs. Afatinib is an irreversible ErbB family blocker that inhibits EGFR, HER2, and HER4. In vitro and in vivo, afatinib have shown increased inhibition of the common EGFR-activating mutations as well as the T790M resistance mutation when compared to erlotinib and gefitinib. Clinically, afatinib has been evaluated in the LUX-Lung series of trials, with improvement in progression-free survival reported in patients with EGFR-activating mutations in both first- and second-/third-line settings when compared to chemotherapy. Further investigation is needed to determine the precise role that afatinib will play in the treatment of patients with non-small cell lung cancer and EGFR-activating mutations.
Project description:In the United States, lung cancer is the second most common cancer in men and women. In 2017, 222,500 new cases and 155,870 deaths from lung cancer are estimated to have occurred. A tyrosine kinase receptor, epidermal growth factor receptor (EGFR), is over expressed or mutated in non-small cell lung cancer (NSCLC) resulting in increased cell proliferation and survival. Tyrosine kinase inhibitors (TKIs) are currently being used as therapy for NSCLC patients, however, they have limited efficacy in NSCLC patients due to acquisition of resistance. This study investigates the role of epithelial-mesenchymal transition (EMT) in the development of resistance against TKIs in NSCLC. Currently, the role of p120-catenin, Kaiso factor and PRMT-1 in reversal of EMT in T790M mutated and TKI-resistant NSCLC cells is a new line of study. In this investigation we found upregulation of cytoplasmic p120-catenin, which was co-localized with Kaiso factor. In the nucleus, binding of p120-catenin to Kaiso factor initiates transcription by activating EMT-transcription factors such as Snail, Slug, Twist, and ZEB1. PRMT-1 was also found to be upregulated, which induces methylation of Twist and repression of E-cadherin activity, thus promoting EMT. We confirmed that TKI-resistant cells have mesenchymal cell type characteristics based on their cell morphology and gene or protein expression of EMT related proteins. EMT proteins, Vimentin and N-cadherin, displayed increased expression, whereas E-cadherin expression was downregulated. Finally, we found that the knockdown of p120-catenin and PRMT-1 by siRNA or use of a PRMT-1 inhibitor Furamidine increased Erlotinib sensitivity and could reverse EMT to overcome TKI resistance.
Project description:Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.
Project description:The Lung Adjuvant Cisplatin Evaluation (LACE) meta-analysis and the meta-analysis of individual participant data reported by non-small cell lung cancer (NSCLC) Meta-analysis Collaborative Group in neo-adjuvant setting validated respectively that adjuvant and neoadjuvant chemotherapy would significantly improve overall survival (OS) and recurrence-free survival for resectable NSCLC. However, chemotherapy has reached a therapeutic plateau. It has been confirmed that epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeting therapy provides a dramatic response to patients with advanced EGFR-mutation positive NSCLC. Researchers have paid more attention to exploring applications of TKIs to early resectable NSCLCs. Several studies on adjuvant TKI treatment concluded its safety and feasibility. But there existed certain limitations of these studies as inference factors to interpret data accurately: the BR19 study recruited patients among which almost 52% had stage IB and only 15 (3.0%, 15/503) had been confirmed with EGFR-mutant type; retrospective studies performed at Memorial Sloan Kettering Cancer Center (MSKCC) selected EGFR mutant-type NSCLC patients but couldn't avoid inherent defects inside retrospective researches; the RADIANT study revised endpoints from targeting at EGFR immunohistochemistry (IHC)+ and/or fluorescence in situ hybridization (FISH)+ mutation to only EGFR IHC+ mutation, leading to selective bias; despite that the SELECT study validated efficacy of adjuvant TKI and second round of TKI after resistance occurred, a single-arm clinical trial is not that persuasive in the absence of comparison with chemotherapy. Taking all these limitations into account, CTONG1104 in China and IMPACT in Japan have been conducted and recruiting patients to offer higher level of evidences to explore efficacy of preoperative TKI therapy for early resectable EGFR mutation positive NSCLC patients (confirmed by pathological results of tumor tissue or lymph node biopsy). On the other hand, case reports and several phase II clinical trials with small sample size tried to elbow their way on respect of preoperative TKI treatment and advised that TKI tended to improve response rate. However, no data on survival rate was present. The first phase II study of biomarker-guided neoadjuvant therapy for stage IIIA-N2 NSCLC patients stratified by EGFR mutation status, sponsored by CSLC0702, showed erlotinib tended to improve response rate, but failed to show benefits of disease-free survival (DFS) or OS. Subsequently, CTONG1103 was designed to investigate efficacy of erlotinib vs. combination of gemcitabine/cisplatin (GC) as neoadjuvant treatment in stage IIIA-N2 NSCLC with sensitizing EGFR mutation in exon 19 or 21. All these ongoing trials should be worthy of our expect to provide convincing evidences for customized therapy for patients with resectable NSCLC.
Project description:BackgroundThe anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) have been administered to patients with ALK-positive non-small cell lung cancer for a long period of time and show a promising response. However, the differences in the toxicity profiles among these drugs are still unclear.MethodsWe performed a comprehensive search of the MEDLINE, EMBASE, WEB OF SCIENCE and COCHRANE databases from the drugs' inception to May 2016 to identify clinical trials. Severe adverse events (AEs) (grade ≥ 3) based on the ALK-TKI type were analysed.ResultsSeventeen trials published between 2011 and 2016, including a total of 1826 patients, were eligible for analysis. Patients in 10 trials (n = 1000) received crizotinib, patients in 5 trials (n = 601) received ceritinib and patients in 2 trials (n = 225) received alectinib. The overall frequencies of treatment-related death and AEs due to treatment withdrawal were 0.9% (12/1365) and 5.5% (85/1543), respectively. Moreover, the frequency of severe AEs in patients treated with ceritinib was significantly higher than patients treated with crizotinib or alectinib, especially for hepatotoxicity, fatigue and some of gastrointestinal symptoms. Additionally, significant difference in the elevated lipase and amylase levels (grade ≥ 3) were detected between ceritinib and crizotinib/alectinib, whereas neutropenia was less frequent.ConclusionsALK-TKIs were safe for ALK-positive patients. Moreover, statistically significant differences in some severe AEs among ceritinib, crizotinib and alectinib were detected in present study.
Project description:Non-small cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations initially respond well to the EGFR tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib. However, clinical efficacy is limited by the development of resistance. In most cases, this resistance is in the form of the T790M mutation. Here, we report the design, synthesis and biochemical evaluation of a novel series of irreversible EGFR tyrosine kinase inhibitors (EGFR-TKIs) that are derived from the anilinoquinazoline scaffold. Guided by molecular modeling, this series of analogs was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and to achieve high levels of anti-tumor activity in cell cultures and in xenografts. The most promising compound 13c ((E) -N - (4 - (4 - (3-fluorobenzyloxy) -3- chlorophenylamino) -7-ethoxyquinazolin-6-yl) -3- ((S) -pyrrolidin-2-yl)acrylamide, which we named Transtinib) displayed strong anti-proliferative activity against the H1975 and A431 cell lines with IC50 values of 34 nM and 62 nM, respectively. In xenograft models, Transtinib significantly decreases tumor size for a prolonged period of time. These results suggest that Transtinib is a potential cancer therapeutic drug lead for the inhibition of mutant EGFR to overcome the development of resistance.