Project description:The movement rates of sharks are intrinsically linked to foraging ecology, predator-prey dynamics and wider ecosystem functioning in marine systems. During ram ventilation, however, shark movement rates are linked not only to ecological parameters, but also to physiology, as minimum speeds are required to provide sufficient water flow across the gills to maintain metabolism. We develop a geometric model predicting a positive scaling relationship between swim speeds in relation to body size and ultimately shark metabolism, taking into account estimates for the scaling of gill dimensions. Empirical data from 64 studies (26 species) were compiled to test our model while controlling for the influence of phylogenetic similarity between related species. Our model predictions were found to closely resemble the observed relationships from tracked sharks, providing a means to infer mobility in particularly intractable species.
Project description:Aneuploidy is a hallmark of tumor cells and yet the precise relationship between aneuploidy and a cell’s proliferative ability, or cellular fitness, has remained elusive. In this study we have combined a detailed analysis of aneuploid clones isolated from laboratory-evolved populations of Saccharomyces cerevisiae with a systematic, genome-wide screen for the fitness effects of telomeric amplifications to address the relationship between aneuploidy and cellular fitness. We found that aneuploid clones rise to high population frequencies in nutrient-limited evolution experiments and show increased fitness relative to wild-type. Direct competition experiments confirmed that three out of four aneuploid events isolated from evolved populations were themselves sufficient to improve fitness. To expand the scope beyond this small number of exemplars, we created a genome-wide collection of >1,800 diploid yeast strains each containing a different telomeric amplicon (Tamp) ranging in size from 0.4 to 1,000kb. Using pooled competition experiments in nutrient-limited chemostats followed by high-throughput sequencing of strain-identifying barcodes, we determined the fitness effects of these >1,800 Tamps under three different conditions. Our data revealed that the fitness landscape explored by telomeric amplifications is much broader than that explored by single-gene amplifications. As also observed in the evolved clones, we found the fitness effects of most Tamps to be condition specific with a minority showing common effects in all three conditions. By integrating our data with previous work that examined the fitness effects of single-gene amplifications genome wide, we found that a small number of genes within each Tamp are centrally responsible for each Tamp’s fitness effects. Our genome-wide Tamp screen confirmed that telomeric amplifications identified in laboratory-evolved populations generally increased fitness. Our results show that Tamps are mutations that produce large, typically condition-dependent changes in fitness that are important drivers of increased fitness in asexually evolving populations. Each of these arrays is a Comparative Genomic Hybridization experiment to detect copy number differences between a reference strain and a strain of interest.
Project description:This announcement describes corrections and comments to the paper entitled 'The plastid genome sequence of the invasive plant common Ragweed (Ambrosia artemisiifolia, Asteraceae)' by A Amiryousefi, J Hyvönen, P Poczai.
Project description:A recent study of North American canids by Rutledge et al. (Biol. Lett. 11, 20150303 (doi:10.1098/rsbl.2015.0303)) refutes the hypothesized hybrid origin of the eastern wolf (EW) based on genomic evidence against very recent hybridization. However, the analyses do not rule out the possibility of more ancient hybridization. Claims to have resolved the evolutionary origin of the EW are therefore inappropriate. Importantly, though, we plead that uncertainty about the ancient history of the taxon should not affect current conservation policy.
Project description:In October 2015 we published the paper 'Measurement of HbA1c in multicentre diabetes trials - should blood samples be tested locally or sent to a central laboratory: an agreement analysis'. Chatterjee and Pradhan have submitted a letter to the editor asking critical questions regarding the methods we used. We offer this letter in response. TRIAL REGISTRATION:Eudract No. 2010-023792-25. Registered on 4 November 2010. ISRCTN No. ISRCTN29255275 . Registered on 12 November 2010.