Object-finding skill created by repeated reward experience.
Ontology highlight
ABSTRACT: For most animals, survival depends on rapid detection of rewarding objects, but search for an object surrounded by many others is known to be difficult and time consuming. However, there is neuronal evidence for robust and rapid differentiation of objects based on their reward history in primates (Hikosaka, Kim, Yasuda, & Yamamoto, 2014). We hypothesized that such robust coding should support efficient search for high-value objects, similar to a pop-out mechanism. To test this hypothesis, we let subjects (n = 4, macaque monkeys) view a large number of complex objects with consistently biased rewards with variable training durations (1, 5, or 30 + days). Following training, subjects searched for a high-value object (Good) among a variable number of low-value objects (Bad). Consistent with our hypothesis, we found that Good objects were accurately and quickly targeted, often by a single and direct saccade with a very short latency (<200 ms). The dependence of search times on display size reduced significantly with longer reward training, giving rise to a more efficient search (40 ms/item to 16 ms/item). This object-finding skill showed a large capacity for value-biased objects and was maintained in the long-term memory with no interference from reward learning with other objects. Such object-finding skill, and in particular its large capacity and long term retention, would be crucial for maximizing rewards and biological fitness throughout life where many objects are experienced continuously and/or intermittently.
SUBMITTER: Ghazizadeh A
PROVIDER: S-EPMC5015994 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA