Unknown

Dataset Information

0

Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy.


ABSTRACT: Severe acute mucositis commonly results from head and neck (chemo)radiotherapy. A predictive model of mucositis could guide clinical decision-making and inform treatment planning. We aimed to generate such a model using spatial dose metrics and machine learning.Predictive models of severe acute mucositis were generated using radiotherapy dose (dose-volume and spatial dose metrics) and clinical data. Penalised logistic regression, support vector classification and random forest classification (RFC) models were generated and compared. Internal validation was performed (with 100-iteration cross-validation), using multiple metrics, including area under the receiver operating characteristic curve (AUC) and calibration slope, to assess performance. Associations between covariates and severe mucositis were explored using the models.The dose-volume-based models (standard) performed equally to those incorporating spatial information. Discrimination was similar between models, but the RFCstandard had the best calibration. The mean AUC and calibration slope for this model were 0.71 (s.d.=0.09) and 3.9 (s.d.=2.2), respectively. The volumes of oral cavity receiving intermediate and high doses were associated with severe mucositis.The RFCstandard model performance is modest-to-good, but should be improved, and requires external validation. Reducing the volumes of oral cavity receiving intermediate and high doses may reduce mucositis incidence.

SUBMITTER: Dean JA 

PROVIDER: S-EPMC5021201 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Normal tissue complication probability (NTCP) modelling using spatial dose metrics and machine learning methods for severe acute oral mucositis resulting from head and neck radiotherapy.

Dean Jamie A JA   Wong Kee H KH   Welsh Liam C LC   Jones Ann-Britt AB   Schick Ulrike U   Newbold Kate L KL   Bhide Shreerang A SA   Harrington Kevin J KJ   Nutting Christopher M CM   Gulliford Sarah L SL  

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 20160527 1


<h4>Background and purpose</h4>Severe acute mucositis commonly results from head and neck (chemo)radiotherapy. A predictive model of mucositis could guide clinical decision-making and inform treatment planning. We aimed to generate such a model using spatial dose metrics and machine learning.<h4>Materials and methods</h4>Predictive models of severe acute mucositis were generated using radiotherapy dose (dose-volume and spatial dose metrics) and clinical data. Penalised logistic regression, suppo  ...[more]

Similar Datasets

| S-EPMC5796681 | biostudies-literature
| S-EPMC6175048 | biostudies-literature
| S-EPMC10825684 | biostudies-literature
| S-EPMC5960211 | biostudies-literature
| S-EPMC10839258 | biostudies-literature
| S-EPMC8906058 | biostudies-literature
| S-EPMC10511799 | biostudies-literature
| S-EPMC9937457 | biostudies-literature
| S-EPMC9221467 | biostudies-literature
| S-EPMC8160377 | biostudies-literature