Unknown

Dataset Information

0

Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy.


ABSTRACT: Post-translational protein modification by the small ubiquitin-related modifier (SUMO) regulates numerous cellular pathways, including transcription, cell division, and genome maintenance. The SUMO protease Ulp2 modulates many of these SUMO-dependent processes in budding yeast. From whole-genome RNA sequencing (RNA-seq), we unexpectedly discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. This is due to the two chromosomes being present at twice their normal copy number. An abnormal number of chromosomes, termed aneuploidy, is usually deleterious. However, development of specific aneuploidies allows rapid adaptation to cellular stresses, and aneuploidy characterizes most human tumors. Extra copies of ChrI and ChrXII appear quickly following loss of active Ulp2 and can be eliminated following reintroduction of ULP2, suggesting that aneuploidy is a reversible adaptive mechanism to counteract loss of the SUMO protease. Importantly, increased dosage of two genes on ChrI-CLN3 and CCR4, encoding a G1-phase cyclin and a subunit of the Ccr4-Not deadenylase complex, respectively-suppresses ulp2? aneuploidy, suggesting that increased levels of these genes underlie the aneuploidy induced by Ulp2 loss. Our results reveal a complex aneuploidy mechanism that adapts cells to loss of the SUMO protease Ulp2.

SUBMITTER: Ryu HY 

PROVIDER: S-EPMC5024685 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Loss of the SUMO protease Ulp2 triggers a specific multichromosome aneuploidy.

Ryu Hong-Yeoul HY   Wilson Nicole R NR   Mehta Sameet S   Hwang Soo Seok SS   Hochstrasser Mark M  

Genes & development 20160801 16


Post-translational protein modification by the small ubiquitin-related modifier (SUMO) regulates numerous cellular pathways, including transcription, cell division, and genome maintenance. The SUMO protease Ulp2 modulates many of these SUMO-dependent processes in budding yeast. From whole-genome RNA sequencing (RNA-seq), we unexpectedly discovered that cells lacking Ulp2 display a twofold increase in transcript levels across two particular chromosomes: chromosome I (ChrI) and ChrXII. This is due  ...[more]

Similar Datasets

2017-08-11 | GSE85501 | GEO
| S-EPMC6303320 | biostudies-other
2018-11-13 | GSE121900 | GEO
2018-11-13 | GSE121899 | GEO
2018-11-13 | GSE121898 | GEO
| S-EPMC2669027 | biostudies-literature
| S-EPMC6694223 | biostudies-literature
| S-SCDT-EMBOJ-2019-102003 | biostudies-other
| PRJNA499007 | ENA
| S-EPMC4018355 | biostudies-literature