Unknown

Dataset Information

0

Neural correlates of spatial and nonspatial attention determined using intracranial electroencephalographic signals in humans.


ABSTRACT: Few studies have directly compared the neural correlates of spatial attention (i.e., attention to a particular location) and nonspatial attention (i.e., attention to a feature in the visual scene) using well-controlled tasks. Here, we investigated the neural correlates of spatial and nonspatial attention in humans using intracranial electroencephalography. The topography and number of electrodes showing significant event-related desynchronization (ERD) or event-related synchronization (ERS) in different frequency bands were studied in 13 epileptic patients. Performance was not significantly different between the two conditions. In both conditions, ERD in the low-frequency bands and ERS in the high-frequency bands were present bilaterally in the parietal cortex (prominently on the right hemisphere) and frontal regions. In addition to these common changes, spatial attention involved right-lateralized activity that was maximal in the right superior parietal lobule (SPL), whereas nonspatial attention involved wider brain networks including the bilateral parietal, frontal, and temporal regions, but still had maximal activity in the right parietal lobe. Within the parietal lobe, spatial attention involved ERD or ERS in the right SPL, whereas nonspatial attention involved ERD or ERS in the right inferior parietal lobule. These findings reveal that common as well as different brain networks are engaged in spatial and nonspatial attention. Hum Brain Mapp 37:3041-3054, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

SUBMITTER: Park GY 

PROVIDER: S-EPMC5025724 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Neural correlates of spatial and nonspatial attention determined using intracranial electroencephalographic signals in humans.

Park Ga Young GY   Kim Taekyung T   Park Jinsick J   Lee Eun Mi EM   Ryu Han Uk HU   Kim Sun I SI   Kim In Young IY   Kang Joong Koo JK   Jang Dong Pyo DP   Husain Masud M  

Human brain mapping 20160429 8


Few studies have directly compared the neural correlates of spatial attention (i.e., attention to a particular location) and nonspatial attention (i.e., attention to a feature in the visual scene) using well-controlled tasks. Here, we investigated the neural correlates of spatial and nonspatial attention in humans using intracranial electroencephalography. The topography and number of electrodes showing significant event-related desynchronization (ERD) or event-related synchronization (ERS) in d  ...[more]

Similar Datasets

| S-EPMC6865857 | biostudies-literature
| S-EPMC1868502 | biostudies-literature
| S-EPMC6871036 | biostudies-literature
| S-EPMC3108440 | biostudies-other
| S-EPMC6547791 | biostudies-literature
| S-EPMC5962588 | biostudies-literature
| S-EPMC5537618 | biostudies-literature
| S-EPMC7915657 | biostudies-literature
| S-EPMC10524674 | biostudies-literature
| S-EPMC3679178 | biostudies-literature