Unknown

Dataset Information

0

Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.


ABSTRACT: The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36?bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.

SUBMITTER: Okada H 

PROVIDER: S-EPMC5025782 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.

Okada Hirokazu H   Ebhardt H Alexander HA   Vonesch Sibylle Chantal SC   Aebersold Ruedi R   Hafen Ernst E  

Nature communications 20160901


The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large gen  ...[more]

Similar Datasets

| S-EPMC6456314 | biostudies-literature
| S-EPMC9418266 | biostudies-literature
| S-EPMC4196228 | biostudies-literature
| S-EPMC4210313 | biostudies-literature
| S-EPMC8790381 | biostudies-literature
| S-EPMC4504508 | biostudies-literature
| S-EPMC2938118 | biostudies-literature
| S-EPMC4709439 | biostudies-literature
| S-EPMC6650997 | biostudies-literature
| S-EPMC4339832 | biostudies-literature