Unknown

Dataset Information

0

Vitamin D controls resistance artery function through regulation of perivascular adipose tissue hypoxia and inflammation.


ABSTRACT: Vitamin D deficiency in human subjects is associated with hypertension, metabolic syndrome and related risk factors of cardiovascular diseases. Serum 25-hydroxyvitamin D levels correlate inversely with adiposity in obese and lean individuals. Bioactive vitamin D, or calcitriol, exerts anti-inflammatory effects on adipocytes, preadipocytes and macrophages in vitro. We tested the hypothesis that vitamin D deficiency alters the phenotype of perivascular adipose tissue (PVAT) leading to impaired function in resistance artery. To examine the effects of vitamin D and PVAT on vascular reactivity, myograph experiments were performed on arteries, with or without intact PVAT, from mice maintained on vitamin D-deficient, vitamin D-sufficient or vitamin D-supplemented diet. Systolic blood pressure was significantly increased in mice on vitamin D-deficient diet. Importantly, vitamin D deficiency enhanced angiotensin II-induced vasoconstriction and impaired the normal ability of PVAT to suppress contractile responses of the underlying mesenteric resistance artery to angiotensin II and serotonin. Furthermore, vitamin D deficiency caused upregulation of the mRNA expression of tumor necrosis factor-?, hypoxia-inducible factor-1? and its downstream target lysyl oxidase in mesenteric PVAT. Incubation of mesenteric arteries under hypoxic conditions impaired the anti-contractile effects of intact PVAT on those arteries from mice on vitamin D-sufficient diet. Vitamin D supplementation protected arteries against hypoxia-induced impairment of PVAT function. The protective effects of vitamin D against vascular dysfunction, hypertension and cardiovascular diseases may be mediated, at least in part, through regulation of inflammatory and hypoxia signaling pathways in PVAT.

SUBMITTER: Pelham CJ 

PROVIDER: S-EPMC5026596 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vitamin D controls resistance artery function through regulation of perivascular adipose tissue hypoxia and inflammation.

Pelham Christopher J CJ   Drews Elizabeth M EM   Agrawal Devendra K DK  

Journal of molecular and cellular cardiology 20160701


Vitamin D deficiency in human subjects is associated with hypertension, metabolic syndrome and related risk factors of cardiovascular diseases. Serum 25-hydroxyvitamin D levels correlate inversely with adiposity in obese and lean individuals. Bioactive vitamin D, or calcitriol, exerts anti-inflammatory effects on adipocytes, preadipocytes and macrophages in vitro. We tested the hypothesis that vitamin D deficiency alters the phenotype of perivascular adipose tissue (PVAT) leading to impaired fun  ...[more]

Similar Datasets

| S-EPMC5522990 | biostudies-literature
| S-EPMC6497339 | biostudies-literature
| S-EPMC4326900 | biostudies-other
| S-EPMC7769966 | biostudies-literature
2021-02-02 | GSE152326 | GEO
| S-EPMC5873875 | biostudies-other
| S-EPMC8652413 | biostudies-literature
| S-EPMC8174366 | biostudies-literature
| S-EPMC5876319 | biostudies-literature
| S-EPMC7022151 | biostudies-literature