Unknown

Dataset Information

0

RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus.


ABSTRACT: Tetranychus cinnabarinus is an important agricultural pest with a broad host range. We previously identified curcumin as a promising acaricidal compound against T. cinnabarinus. However, the acaricidal mechanism of curcumin remains unknown. In this study, RNA-seq was employed to analyze the transcriptome changes in T. cinnabarinus treated with curcumin or the solvent. A total of 105,706,297 clean sequence reads were generated by sequencing, with more than 90% of the reads successfully mapped to the reference sequence. The RNA-seq identified 111 and 96 differentially expressed genes between curcumin- and solvent-treated mites at 24 and 48?h after treatment, respectively. GO enrichment analysis of differentially expressed genes showed that the cellular process was the dominant group at both time points. Finally, we screened 23 differentially expressed genes that were functionally identical or similar to the targets of common insecticide/acaricides or genes that were associated with mite detoxification and metabolism. Calmodulin, phospholipase A2, and phospholipase C were activated upon curcumin treatment suggesting that the calcium channel related genes might play important roles in mite's response to curcumin. Overall our results revealed the global transcriptional changes in T. cinnabarinus after curcumin treatment to enable further identification of the targets of curcumin in mites.

SUBMITTER: Liu X 

PROVIDER: S-EPMC5031819 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

RNA-Seq Analysis Reveals Candidate Targets for Curcumin against <i>Tetranychus cinnabarinus</i>.

Liu Xuejiao X   Wu Dousheng D   Zhang Yongqiang Y   Zhou Hong H   Lai Ting T   Ding Wei W  

BioMed research international 20160908


<i>Tetranychus cinnabarinus</i> is an important agricultural pest with a broad host range. We previously identified curcumin as a promising acaricidal compound against <i>T. cinnabarinus</i>. However, the acaricidal mechanism of curcumin remains unknown. In this study, RNA-seq was employed to analyze the transcriptome changes in <i>T. cinnabarinus</i> treated with curcumin or the solvent. A total of 105,706,297 clean sequence reads were generated by sequencing, with more than 90% of the reads su  ...[more]

Similar Datasets

2016-09-28 | GSE80001 | GEO
| S-EPMC6414448 | biostudies-literature
| S-EPMC5306011 | biostudies-literature
2017-10-27 | GSE92959 | GEO
| S-EPMC7379272 | biostudies-literature
| PRJNA289178 | ENA
| PRJNA306913 | ENA
| PRJNA359176 | ENA
| PRJNA169646 | ENA
| PRJNA637702 | ENA