Unknown

Dataset Information

0

The "Gln-Type" Thiol Dioxygenase from Azotobacter vinelandii is a 3-Mercaptopropionic Acid Dioxygenase.


ABSTRACT: Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the O2-dependent oxidation of l-cysteine to produce cysteinesulfinic acid. Bacterial CDOs have been subdivided as either "Arg-type" or "Gln-type" on the basis of the identity of conserved active site residues. To date, "Gln-type" enzymes remain largely uncharacterized. It was recently noted that the "Gln-type" enzymes are more homologous with another thiol dioxygenase [3-mercaptopropionate dioxygenase (MDO)] identified in Variovorax paradoxus, suggesting that enzymes of the "Gln-type" subclass are in fact MDOs. In this work, a putative "Gln-type" thiol dioxygenase from Azotobacter vinelandii (Av) was purified to homogeneity and characterized. Steady-state assays were performed using three substrates [3-mercaptopropionic acid (3mpa), l-cysteine (cys), and cysteamine (ca)]. Despite comparable maximal velocities, the "Gln-type" Av enzyme exhibited a specificity for 3mpa (kcat/KM = 72000 M(-1) s(-1)) nearly 2 orders of magnitude greater than those for cys (110 M(-1) s(-1)) and ca (11 M(-1) s(-1)). Supporting X-band electron paramagnetic resonance (EPR) studies were performed using nitric oxide (NO) as a surrogate for O2 binding to confirm obligate-ordered addition of substrate prior to NO. Stoichimetric addition of NO to solutions of 3mpa-bound enzyme quantitatively yields an iron-nitrosyl species (Av ES-NO) with EPR features consistent with a mononuclear (S = (3)/2) {FeNO}(7) site. Conversely, two distinct substrate-bound conformations were observed in Av ES-NO samples prepared with cys and ca, suggesting heterogeneous binding within the enzymatic active site. Analytical EPR simulations are provided to establish the relative binding affinity for each substrate (3map > cys > ca). Both kinetic and spectroscopic results presented here are consistent with 3mpa being the preferred substrate for this enzyme.

SUBMITTER: Pierce BS 

PROVIDER: S-EPMC5036878 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The "Gln-Type" Thiol Dioxygenase from Azotobacter vinelandii is a 3-Mercaptopropionic Acid Dioxygenase.

Pierce Brad S BS   Subedi Bishnu P BP   Sardar Sinjinee S   Crowell Joshua K JK  

Biochemistry 20151217 51


Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the O2-dependent oxidation of l-cysteine to produce cysteinesulfinic acid. Bacterial CDOs have been subdivided as either "Arg-type" or "Gln-type" on the basis of the identity of conserved active site residues. To date, "Gln-type" enzymes remain largely uncharacterized. It was recently noted that the "Gln-type" enzymes are more homologous with another thiol dioxygenase [3-mercaptopropionate dioxygenase (MDO)] identified in Variov  ...[more]

Similar Datasets

| S-EPMC5036937 | biostudies-literature
| PRJNA35043 | ENA
| PRJNA381639 | ENA
| S-EPMC4702634 | biostudies-literature
| S-EPMC4282421 | biostudies-literature
| S-EPMC10669500 | biostudies-literature
| S-EPMC3165507 | biostudies-literature
| S-EPMC8604073 | biostudies-literature
2023-06-07 | GSE234075 | GEO
| PRJNA186699 | ENA