Unknown

Dataset Information

0

Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater.


ABSTRACT: Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design.

SUBMITTER: Zahid E 

PROVIDER: S-EPMC5040421 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater.

Zahid Erum E   Hussain Ijaz I   Spöck Gunter G   Faisal Muhammad M   Shabbir Javid J   M AbdEl-Salam Nasser N   Hussain Tajammal T  

PloS one 20160928 9


Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampli  ...[more]

Similar Datasets

| S-EPMC8501132 | biostudies-literature
| S-EPMC8019184 | biostudies-literature
| S-EPMC9611088 | biostudies-literature
| S-EPMC9367752 | biostudies-literature
| S-EPMC8752968 | biostudies-literature
| S-EPMC10333454 | biostudies-literature
| S-EPMC9674988 | biostudies-literature
| S-EPMC7885028 | biostudies-literature
| S-EPMC6186961 | biostudies-literature
2020-06-28 | GSE152902 | GEO