Unknown

Dataset Information

0

Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C-H Activation by Soybean Lipoxygenase-1.


ABSTRACT: The proposed contributions of distinct classes of local versus global protein motions during enzymatic bond making/breaking processes has been difficult to verify. We employed soybean lipoxygenase-1 as a model system to investigate the impact of high pressure at variable temperatures on the hydrogen-tunneling properties of the wild-type protein and three single-site mutants. For all variants, pressure dramatically elevates the enthalpies of activation for the C-H activation. In contrast, the primary kinetic isotope effects (KIEs) for C-H activation and their corresponding temperature dependencies remain unchanged up to ca. 700?bar. The differential impact of elevated hydrostatic pressure on the temperature dependencies of rate constants versus substrate KIEs provides direct evidence for two distinct classes of protein motions: local, isotope-dependent donor-acceptor distance-sampling modes, and a more global, isotope-independent search for productive protein conformational sub-states.

SUBMITTER: Hu S 

PROVIDER: S-EPMC5040518 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydrostatic Pressure Studies Distinguish Global from Local Protein Motions in C-H Activation by Soybean Lipoxygenase-1.

Hu Shenshen S   Cattin-Ortolá Jérôme J   Munos Jeffrey W JW   Klinman Judith P JP  

Angewandte Chemie (International ed. in English) 20160627 32


The proposed contributions of distinct classes of local versus global protein motions during enzymatic bond making/breaking processes has been difficult to verify. We employed soybean lipoxygenase-1 as a model system to investigate the impact of high pressure at variable temperatures on the hydrogen-tunneling properties of the wild-type protein and three single-site mutants. For all variants, pressure dramatically elevates the enthalpies of activation for the C-H activation. In contrast, the pri  ...[more]

Similar Datasets

| S-EPMC3727290 | biostudies-literature
| S-EPMC5785388 | biostudies-literature
| S-EPMC3000969 | biostudies-literature
2022-02-22 | PXD006234 | Pride
| S-EPMC8620206 | biostudies-literature
2005-12-30 | GSE3935 | GEO
| S-EPMC7294325 | biostudies-literature
2020-09-09 | PXD019007 | Pride
| S-EPMC1766415 | biostudies-literature
| S-EPMC2737062 | biostudies-literature