Unknown

Dataset Information

0

Four-dimensional respiratory motion-resolved whole heart coronary MR angiography.


ABSTRACT: Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach.Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation.Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases.XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. Magn Reson Med 77:1473-1484, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

SUBMITTER: Piccini D 

PROVIDER: S-EPMC5040623 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Four-dimensional respiratory motion-resolved whole heart coronary MR angiography.

Piccini Davide D   Feng Li L   Bonanno Gabriele G   Coppo Simone S   Yerly Jérôme J   Lim Ruth P RP   Schwitter Juerg J   Sodickson Daniel K DK   Otazo Ricardo R   Stuber Matthias M  

Magnetic resonance in medicine 20160328 4


<h4>Purpose</h4>Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach.<h4>Methods</h4>Using a respirator  ...[more]

Similar Datasets

| S-EPMC6220806 | biostudies-literature
| S-EPMC6563440 | biostudies-literature
| S-EPMC9235103 | biostudies-literature
| S-EPMC5292940 | biostudies-literature
| S-EPMC6715422 | biostudies-literature
| S-EPMC8006382 | biostudies-literature
| S-EPMC5763408 | biostudies-literature
| S-EPMC2932832 | biostudies-literature
| S-EPMC4644523 | biostudies-literature
| S-EPMC5814733 | biostudies-literature