Unknown

Dataset Information

0

A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum.


ABSTRACT: Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO2. However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and pCO2. Here we describe a system in which the target pCO2 is controlled via direct analysis of pCO2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA) that measures pCO2 and conveys this value to a Proportional-Integral-Derivative (PID) controller. The controller commands a solenoid valve that opens and closes the CO2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of pCO2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum. We found that after 11 months of high CO2 exposure, photosynthesis increased with CO2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO2, such as temperature, irradiance and nutrients.

SUBMITTER: Sordo L 

PROVIDER: S-EPMC5045892 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

A direct CO<sub>2</sub> control system for ocean acidification experiments: testing effects on the coralline red algae <i>Phymatolithon lusitanicum</i>.

Sordo Laura L   Santos Rui R   Reis Joao J   Shulika Alona A   Silva Joao J  

PeerJ 20160927


Most ocean acidification (OA) experimental systems rely on pH as an indirect way to control CO<sub>2</sub>. However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and <i>p</i>CO<sub>2</sub>. Here we describe a system in which the target <i>p</i>CO<sub>2</sub> is controlled via direct analysis of <i>p</i>CO<sub>2</sub> in seawater. This direct type of control accommodates potential temperature and salinity shifts, as t  ...[more]

Similar Datasets

| S-EPMC3597258 | biostudies-literature
| S-EPMC4032452 | biostudies-literature
2022-08-26 | GSE211882 | GEO
| S-EPMC7284203 | biostudies-literature
| S-EPMC7015681 | biostudies-literature