Efficient Killing of High Risk Neuroblastoma Using Natural Killer Cells Activated by Plasmacytoid Dendritic Cells.
Ontology highlight
ABSTRACT: High-risk neuroblastoma (NB) remains a major therapeutic challenge despite the recent advent of disialoganglioside (GD2)-antibody treatment combined with interleukin (IL)-2 and granulocyte monocyte-colony stimulating factor (GM-CSF). Indeed, more than one third of the patients still die from this disease. Here, we developed a novel approach to improve the current anti-GD2 immunotherapy based on NK cell stimulation using toll-like receptor (TLR)-activated plasmacytoid dendritic cells (pDCs). We demonstrated that this strategy led to the efficient killing of NB cells. When the expression of GD2 was heterogeneous on NB cells, the combination of pDC-mediated NK-cell activation and anti-GD2 treatment significantly increased the cytotoxicity of NK cells against NB cells. Activation by pDCs led to a unique NK-cell phenotype characterized by increased surface expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with increased expression of CD69 on CD56dim cytotoxic cells, and strong interferon-? production. Additionally, NB-cell killing was mediated by the TRAIL death-receptor pathway, as well as by the release of cytolytic granules via the DNAX accessory molecule 1 pathway. NK-cell activation and lytic activity against NB was independent of cell contact, depended upon type I IFN produced by TLR-9-activated pDCs, but was not reproduced by IFN-? stimulation alone. Collectively, these results highlighted the therapeutic potential of activated pDCs for patients with high-risk NB.
SUBMITTER: Cordeau M
PROVIDER: S-EPMC5055353 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
ACCESS DATA