Unknown

Dataset Information

0

Fabrication of a silver particle-integrated silicone polymer-covered metal stent against sludge and biofilm formation and stent-induced tissue inflammation.


ABSTRACT: To reduce tissue or tumor ingrowth, covered self-expandable metal stents (SEMSs) have been developed. The effectiveness of covered SEMSs may be attenuated by sludge or stone formation or by stent clogging due to the formation of biofilm on the covering membrane. In this study, we tested the hypothesis that a silicone membrane containing silver particles (Ag-P) would prevent sludge and biofilm formation on the covered SEMS. In vitro, the Ag-P-integrated silicone polymer-covered membrane exhibited sustained antibacterial activity, and there was no definite release of silver ions from the Ag-P-integrated silicone polymer membrane at any time point. Using a porcine stent model, in vivo analysis demonstrated that the Ag-P-integrated silicone polymer-covered SEMS reduced the thickness of the biofilm and the quantity of sludge formed, compared with a conventional silicone-covered SEMS. In vivo, the release of silver ions from an Ag-P-integrated silicone polymer-covered SEMS was not detected in porcine serum. The Ag-P-integrated silicone polymer-covered SEMS also resulted in significantly less stent-related bile duct and subepithelium tissue inflammation than a conventional silicone polymer-covered SEMS. Therefore, the Ag-P-integrated silicone polymer-covered SEMS reduced sludge and biofilm formation and stent-induced pathological changes in tissue. This novel SEMS may prolong the stent patency in clinical application.

SUBMITTER: Lee TH 

PROVIDER: S-EPMC5064322 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fabrication of a silver particle-integrated silicone polymer-covered metal stent against sludge and biofilm formation and stent-induced tissue inflammation.

Lee Tae Hoon TH   Jang Bong Seok BS   Jung Min Kyo MK   Pack Chan Gi CG   Choi Jun-Ho JH   Park Do Hyun DH  

Scientific reports 20161014


To reduce tissue or tumor ingrowth, covered self-expandable metal stents (SEMSs) have been developed. The effectiveness of covered SEMSs may be attenuated by sludge or stone formation or by stent clogging due to the formation of biofilm on the covering membrane. In this study, we tested the hypothesis that a silicone membrane containing silver particles (Ag-P) would prevent sludge and biofilm formation on the covered SEMS. In vitro, the Ag-P-integrated silicone polymer-covered membrane exhibited  ...[more]

Similar Datasets

| S-EPMC8117788 | biostudies-literature
| S-EPMC8492690 | biostudies-literature
| S-EPMC4713186 | biostudies-other
| S-EPMC8165876 | biostudies-literature
| S-EPMC6630599 | biostudies-literature
| S-EPMC4798835 | biostudies-other
| S-EPMC7428313 | biostudies-literature
| S-EPMC8430273 | biostudies-literature
| S-EPMC2211751 | biostudies-literature