Ontology highlight
ABSTRACT: Purpose
Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS.Material and methods
Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains.Results
ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs (p = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (? = - 0.85, p = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI (p < 0.05).Conclusions
The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.
SUBMITTER: Kopitzki K
PROVIDER: S-EPMC5065043 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
Kopitzki Klaus K Oldag Andreas A Sweeney-Reed Catherine M CM Machts Judith J Veit Maria M Kaufmann Jörn J Hinrichs Hermann H Heinze Hans-Jochen HJ Kollewe Katja K Petri Susanne S Mohammadi Bahram B Dengler Reinhard R Kupsch Andreas R AR Vielhaber Stefan S
NeuroImage. Clinical 20160929
<h4>Purpose</h4>Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS.<h4>Material and methods</h4>Interhemispheric hom ...[more]