Ontology highlight
ABSTRACT:
SUBMITTER: Clyde MA
PROVIDER: S-EPMC5065620 | biostudies-literature | 2016 Oct
REPOSITORIES: biostudies-literature
Clyde Merlise A MA Palmieri Weber Rachel R Iversen Edwin S ES Poole Elizabeth M EM Doherty Jennifer A JA Goodman Marc T MT Ness Roberta B RB Risch Harvey A HA Rossing Mary Anne MA Terry Kathryn L KL Wentzensen Nicolas N Whittemore Alice S AS Anton-Culver Hoda H Bandera Elisa V EV Berchuck Andrew A Carney Michael E ME Cramer Daniel W DW Cunningham Julie M JM Cushing-Haugen Kara L KL Edwards Robert P RP Fridley Brooke L BL Goode Ellen L EL Lurie Galina G McGuire Valerie V Modugno Francesmary F Moysich Kirsten B KB Olson Sara H SH Pearce Celeste Leigh CL Pike Malcolm C MC Rothstein Joseph H JH Sellers Thomas A TA Sieh Weiva W Stram Daniel D Thompson Pamela J PJ Vierkant Robert A RA Wicklund Kristine G KG Wu Anna H AH Ziogas Argyrios A Tworoger Shelley S SS Schildkraut Joellen M JM
American journal of epidemiology 20161003 8
Previously developed models for predicting absolute risk of invasive epithelial ovarian cancer have included a limited number of risk factors and have had low discriminatory power (area under the receiver operating characteristic curve (AUC) < 0.60). Because of this, we developed and internally validated a relative risk prediction model that incorporates 17 established epidemiologic risk factors and 17 genome-wide significant single nucleotide polymorphisms (SNPs) using data from 11 case-control ...[more]