Ontology highlight
ABSTRACT:
SUBMITTER: Ioannidis NM
PROVIDER: S-EPMC5065685 | biostudies-literature | 2016 Oct
REPOSITORIES: biostudies-literature
Ioannidis Nilah M NM Rothstein Joseph H JH Pejaver Vikas V Middha Sumit S McDonnell Shannon K SK Baheti Saurabh S Musolf Anthony A Li Qing Q Holzinger Emily E Karyadi Danielle D Cannon-Albright Lisa A LA Teerlink Craig C CC Stanford Janet L JL Isaacs William B WB Xu Jianfeng J Cooney Kathleen A KA Lange Ethan M EM Schleutker Johanna J Carpten John D JD Powell Isaac J IJ Cussenot Olivier O Cancel-Tassin Geraldine G Giles Graham G GG MacInnis Robert J RJ Maier Christiane C Hsieh Chih-Lin CL Wiklund Fredrik F Catalona William J WJ Foulkes William D WD Mandal Diptasri D Eeles Rosalind A RA Kote-Jarai Zsofia Z Bustamante Carlos D CD Schaid Daniel J DJ Hastie Trevor T Ostrander Elaine A EA Bailey-Wilson Joan E JE Radivojac Predrag P Thibodeau Stephen N SN Whittemore Alice S AS Sieh Weiva W
American journal of human genetics 20160922 4
The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of indivi ...[more]