Unknown

Dataset Information

0

Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize.


ABSTRACT: Both insufficient and excessive male inflorescence size leads to a reduction in maize yield. Knowledge of the genetic architecture of male inflorescence is essential to achieve the optimum inflorescence size for maize breeding. In this study, we used approximately eight thousand inbreds, including both linkage populations and association populations, to dissect the genetic architecture of male inflorescence. The linkage populations include 25 families developed in the U.S. and 11 families developed in China. Each family contains approximately 200 recombinant inbred lines (RILs). The association populations include approximately 1000 diverse lines from the U.S. and China. All inbreds were genotyped by either sequencing or microarray. Inflorescence size was measured as the tassel primary branch number (TBN) and tassel length (TL). A total of 125 quantitative trait loci (QTLs) were identified (63 for TBN, 62 for TL) through linkage analyses. In addition, 965 quantitative trait nucleotides (QTNs) were identified through genomewide study (GWAS) at a bootstrap posterior probability (BPP) above a 5% threshold. These QTLs/QTNs include 24 known genes that were cloned using mutants, for example Ramosa3 (ra3), Thick tassel dwarf1 (td1), tasselseed2 (ts2), liguleless2 (lg2), ramosa1 (ra1), barren stalk1 (ba1), branch silkless1 (bd1) and tasselseed6 (ts6). The newly identified genes encode a zinc transporter (e.g. GRMZM5G838098 and GRMZM2G047762), the adapt in terminal region protein (e.g. GRMZM5G885628), O-methyl-transferase (e.g. GRMZM2G147491), helix-loop-helix (HLH) DNA-binding proteins (e.g. GRMZM2G414252 and GRMZM2G042895) and an SBP-box protein (e.g. GRMZM2G058588). These results provide extensive genetic information to dissect the genetic architecture of inflorescence size for the improvement of maize yield.

SUBMITTER: Wu X 

PROVIDER: S-EPMC5066742 | biostudies-literature | 2016 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize.

Wu Xun X   Li Yongxiang Y   Shi Yunsu Y   Song Yanchun Y   Zhang Dengfeng D   Li Chunhui C   Buckler Edward S ES   Li Yu Y   Zhang Zhiwu Z   Wang Tianyu T  

Plant biotechnology journal 20160123 7


Both insufficient and excessive male inflorescence size leads to a reduction in maize yield. Knowledge of the genetic architecture of male inflorescence is essential to achieve the optimum inflorescence size for maize breeding. In this study, we used approximately eight thousand inbreds, including both linkage populations and association populations, to dissect the genetic architecture of male inflorescence. The linkage populations include 25 families developed in the U.S. and 11 families develo  ...[more]

Similar Datasets

| S-EPMC4629326 | biostudies-literature
| S-EPMC2984198 | biostudies-literature
| S-EPMC6776153 | biostudies-literature
| S-EPMC10931974 | biostudies-literature
| S-EPMC3219606 | biostudies-literature
| S-EPMC6218240 | biostudies-literature
| S-EPMC7511027 | biostudies-literature
| S-EPMC6044530 | biostudies-literature
| S-EPMC2677598 | biostudies-literature
| S-EPMC6647133 | biostudies-literature