Unknown

Dataset Information

0

Spin pumping in magnetic trilayer structures with an MgO barrier.


ABSTRACT: We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, Aex, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, tMgO, is increased from 1 to 4?nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchange arising from direct contact between the two ferromagnetic layers. The Gilbert damping is found to be almost independent of the MgO thickness, suggesting the suppression of spin pumping. The element-specific technique of x-ray detected FMR reveals a small dynamic exchange interaction, acting in concert with the static interaction to induce coupled precession across the multilayer stack. These results highlight the potential of spin pumping and spin transfer torque for device applications in magnetic tunnel junctions relying on commonly used MgO barriers.

SUBMITTER: Baker AA 

PROVIDER: S-EPMC5067716 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spin pumping in magnetic trilayer structures with an MgO barrier.

Baker A A AA   Figueroa A I AI   Pingstone D D   Lazarov V K VK   van der Laan G G   Hesjedal T T  

Scientific reports 20161018


We present a study of the interaction mechanisms in magnetic trilayer structures with an MgO barrier grown by molecular beam epitaxy. The interlayer exchange coupling, A<sub>ex</sub>, is determined using SQUID magnetometry and ferromagnetic resonance (FMR), displaying an unexpected oscillatory behaviour as the thickness, t<sub>MgO</sub>, is increased from 1 to 4 nm. Transmission electron microscopy confirms the continuity and quality of the tunnelling barrier, eliminating the prospect of exchang  ...[more]

Similar Datasets

| S-EPMC4589767 | biostudies-literature
| S-EPMC4189023 | biostudies-literature
| S-EPMC4676065 | biostudies-literature
| S-EPMC6377465 | biostudies-literature
| S-EPMC8742073 | biostudies-literature
| S-EPMC6013435 | biostudies-literature
| S-EPMC4298741 | biostudies-literature